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RESUMO

Este trabalho apresenta uma metodologia para obten¢do dos coeficientes de
arrasto e sustentagdo de cinco asas distintas. Comegando com uma asa de
geometria simples, o estudo avangou até a implantagéo de diferentes
“winglets” nas demais asas, colocados de forma a produzir um acréscimo na
forca aerodindmica vertical, conhecida como “Down Force”. O estudo foi
realizado através de técnicas de solugdo numérica de equagbes diferenciais
do movimento do fluido (conservagéo da massa, quantidade de movimento e
energia), sem as quais ndo seria possivel a concluséo desta obra, tendo em
vista o0 tempo e o custo embutidos em ensaios experimentais. Ao final deste,
encontram-se alguns comentarios pertinentes aos resultados obtidos € uma
analise comparativa entre as geometrias estudadas, mostrando claramente
os efeitos causados pelos “winglets” nos valores dos coeficientes

aerodindmicos.



ABSTRACT

This report presents a methodology for attainment the drag and lift
coefficients of five distinct wings. Starting with a simple geometry wing, this
study advanced until the implantation of different winglets in the others wings,
placed to produce an addition in the vertical aerodynamic force, known as
"Down Force". The study was carried through techniques of numerical
solution of differentials equations of the movement of the fluid (mass
conservation, momentum and energy), without which the conclusion of this
workmanship would not be possible, in view of the time and the cost inlaid in
experimental tests. At the end, there are some pertinent commentaries to the
gotten results meet and a comparative analysis between the shapes studied,
showing clearly the effect caused for winglets in the values of the

aerodynamic coefficients.



1. INTRODUGAO

A utilizagio de técnicas numéricas para a solugdo de problemas, de certa forma
complexos, da engenharia, s6 ¢ uma realidade, atualmente, gracas ao desenvolvimento

de super computadores e de grande capacidade fisica, para armazenamento de dados.

A ampla aceitagio dos modelos numéricos pelos que estdo interessados na solugdo
desses problemas ¢ explicada pela grande e relativa simplicidade de aplicagéio destas

técmicas.

A solugiio de um escoamente turbulento supersonico sobre um aerofolio, na década de
60, consumiria um tempo de processamento de cerca de 30 anos, enquanto que, nos dias

atuais, seriam necessarios alguns minutos para realizar essa tarefa.

Tanto no meio académico-cientifico como no industrial, o uso de técnicas numéricas
para a solugio desses problemas tende a ficar cada vez mais facil e acessivel, pois os
custos envolventes sio cada vez menores. A utilizagdo de Dindmica dos Fluidos
Computacional (CFD) em diversas 4reas de ecngenharia tem aumentando
significativamente nos Ultimos anos, isto em fun¢fio da diminuigdo dos custos dos
recursos computacionais necessirios nesse campo. A vantagem da utilizagio de
métodos numéricos para a anélise do problema ¢ a possibilidade de estudar em detalhes
e com condi¢des controladas o escoamento, realizando estudos paramétricos a um custo
factivel quando comparado a estudos experimentais. Entretanto, o simulador numérico
deve ser cuidadosamente validado e confrontado com resultados experimentais para que

estudos inéditos possam ser considerados confidveis.

Um exemplo do emprego bem sucedide da Dindmica dos Fluidos Computacional como
ferramenta de projeto e analise pode ser encontrado em Morgan and Weatherill (1996):
no projeto do avifio A330/A340 da companhia européia AIRBUS, 800 tipos de asas
foram analisados, levando-se um tempo de 2 anos a um custo de US$1.000.000. Caso a
mesma andlise paramétrica fosse feita em tunel de vento, para instrumentar e ensaiar os
800 tipos de asas seriam necessarios 150 anos a um custo de aproximadamente
U$130.000.000. As simulagdes, nesse caso, sfio na maioria baseadas na solucdo da

equagio de Buler e resultados passiveis de serem aplicados em projetos foram obtidos



no final da década de 80 e inicio dos anos 90. Atualmente, avancos significativos
visando 2 utilizagfio da solugio completa da equagio de Navier-Stokes tém sido feitos,

mas, no entanto, aplicaveis apenas a problemas que envolvam geometrias simples.



2. OBJETIVOS

Estudar o método de volumes finitos para solugio numérica de problema da engenharia,

bem como os “softwares” utilizados para tal técnica.

Além disso, temos em mente, o desenvolvimento de uma metodologia para obtengéo do
coeficiente de sustentacio (Cp), coeficiente de arrasto (Cp), para determinadas
geometrias; e verificagdo do comportamento desses coeficientes, bem como a relagdo

entre si, quando da modificagdo em alguns locais da geometria.

O principal foco na realiza¢io deste trabalho ¢ aliar o avango tecnoldgico ocorrido nos
ultimos anos, tornando os computadores cada vez mais poderosos, com o crescente
desenvolvimento de algoritmos computacionais, que tornam economicamente vidvel a

analise de escoamentos complexos da engenharia, tal qual aqui apresentado.



3. FUNDAMENTOS DA MECANICA DOS FLUIDOS

3.1. Aspectos Gerais

As idéais mostradas neste capitulo podem ser encontradas na referéncia [1] e no desejo

do leitor deve ser consultada para maiores esclarecimentos.

3.1.1. Definicdo de um Fluido

A mecénica dos fluidos lida com o comportamento dos fluidos em repouso € em

movimento.

Definigdo: um fluido é uma substincia que se deforma continuamente sob a aplicagéo
de uma tensdo de cisalhamento (tangencial), ndo importando o qudo pequena esta possa

5€Cr.

Assim, os fluidos compreendem as fases liquida e gasosa (ou de vapor) das formas
fisicas nas quais a matéria existe. A distingfio entre um fluido e o estado solido da
matéria ¢ clara quando vocé compara os seus comportamentos. Um sélido deforma-se

quando uma tens#io de cisalhamento [he € aplicada, mas nfio continuamente.

Na Figura 1, os comportamentos de um sélido (a) e de um fluido (b), sob a agéo de uma
forga tangencial constante, sdo comparados. Na figura 3.1a, a forca de cisalhamento ¢
aplicada sobre o sdlido através através da placa superior a qual ela esta ligado. Quando a
forca cisalhante ¢ aplicada na parte superior, o bloco se deforma como mostrado.
Sabemos, pois que, desde que o limite eldstico nfio seja ultrapassado, a deformagéo ¢

proporcional a tensdo de cisalhamento aplicada, r=F/4, onde 4 ¢é a é4rea da

superficie em contato com a placa.



{0} Bolido {# Fluigio

Figura 1 Comportamento de um sélido e de um fluido sob a agdo de uma tensdo de cisathamento
constanie.

Consideremos agora um clemento fluido entre as duas placas, como visto na Fig 3.15.
Enquanto a forga F estiver aplicada na placa superior, a deformacéio do elemento
fluido aumenta continuamente. O fluido em contato direto com a fronteira sdlida tem a
velocidade da propria fronteira; ndo ha deslizamento. Este é um fato experimental

baseado em numerosas observagdes do comportamento dos fluidos. A forma do

elemento fluido em instantes sucessivos f, <!, <t,, ¢ mostrada pelas linhas tracejadas.

Como o movimento do fluido continua sob a aplicagdo de uma tensdo cisalhante,
podemos, alternativamente, definir um fluido como uma substéncia incapaz de suportar

tensdo de cisalhamento quando em repouso.

3.1.2. Enfoque Diferencial versus Enfoque Integral

As leis basicas que aplicamos na mecénica dos fluidos podem ser formauladas em

termos de sistemas e de volumes de controle infinitesimais ou finitos.

No primeiro caso, as equagdes resultantes sdo equages direnciais. A solugfo das
equagdes diferenciais do movimento prové um meio de determinar o comportamento

detalhado (ponto a ponto) do fluido, enfoque que sera dado no percorrer deste trabalho.

Frequentemente a informa¢dio procurada ndo requer conhecimento detalhado do
escoamento. Nestes casos, é mais apropriado empregar a formulagdo integral das leis

basicas.

3.1.3. O Fluido como um Continuo

Na definicéio de fluido apresentada anteriormente, nenhuma mengéo foi feita a estrutura
molecular da matéria. Todos os fluidos sdo compostos de moléculas em constante

movimento. Contudo, na maioria das aplicagdes de engenharia, estamos interessados



nos efeitos médios ou macroscépicos de muitas moléculas. SHo esses efeitos que
geralmente percebemos e medimos. Tratamos, assim, um fluido como uma substéncia
infinitamente divisivel, um continuo, ¢ deixamos de lado o comportamento das

moléculas individuais.

O conceito de um continuo € a base da mecénica dos fluidos classica. A hipotese ¢
valida no tratamento do comportamento dos fluidos sob condi¢des normais. Entretanto,
ela passa a ser falha sempre que a trajetoria média livre das moléculas se torna da
mesma ordem de grandeza da menor dimenséo caracteristica significativa do problema.
Em casos como o escoamento de gas rarefeito, devemos abandonar o conceito de

continuo em favor dos pontos de vista microscopico e estatistico.

Em consequéncia da hipitese do continuo, cada propriedade do fluido é considerada
como tendo um valor definido em cada ponto do espago. Dessa forma, as propriedades
do fluido como massa especifica, temperatura, velocidade etc. sdo consideradas fugdes

continuas da posigdo e do tempo.

Para ilustrar o conceito de uma propriedade num ponto, considere a maneira pela qual
determinamos a massa especifica num ponto. Uma regifio de fluido ¢ mostrada na

Figura 2.

¥ Yolume ¥ de
s ASSS pe

Volume &% de
582 fm
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fa iy

Figura 2 Defini¢do de massa especifica mum ponto,
Estamos interessados em determinar a massa especifica no ponto C, cujas coordenadas
s80 Xp, Vo € Zp. A massa especifica é definida como massa por unidade de volume. Entéo,

a massa especifica média dentro do volume V sera dada por p=m/V . Em geral, isso



nfio serd igual ao valor da massa especifica no ponto C. Para determinar a massa
especifica em C, devemos selecionar um pequeno volume 8V, ao redor do ponto C e
determinar a razio dm/SV. O incremento do volume oV deve ser suficientemente
grande para forncecer um valor significativo e reproduzivel da massa especifica num
local e ainda pequeno o suficiente para poder detectar variagbes espaciais da massa
especifica. A massa especifica tende a se aproximar de um valor assint6tico a medida
que o volume ¢ reduzido, encerrando apenas fluido homogéneo na vizinhanga imediata
no ponto C. Quando &V fica tho pequeno que passa a conter apenas um pequeno
niimero de moléculas, torna-se impossivel fixar um valor definido para dm/ 46V ; o valor
ir4 variar imprevisivelmente enquanto moléculas cruzam para dentro e para fora do
volume. H4 por conseguinte, um valor inferior para &V, designado &V na Fig 3.2,
permissivel para uso na definigio de massa especifica num ponto. A massa especifica

num “ponto” ¢ entdo definida como

A e ]
p_avgglvév

Uma vez que o ponto C foi arbitrério, a massa especifica em qualquer ponto do fluido
poderia ser determinada de modo semelhante. Se determinages de massa especifica
fossem feitas simultancamente em um namero infinito de pontos do fluido, obteriamos

uma expressio para a distribuigio de massa especifica como fungfo das coordenadas

espaciais, p = p(x, y,z), no instante de tempo dado.

A massa especifica em qualquer ponto pode variar com o tempo como resultado de
trabalho realizado sobre o fluido, ou por ele, ou de transferéncia de calor para o mesmo.

Entdo, a representagfio completa da massa especifica € dada por

p= p(x,y, z,t)

Como a massa especifica é uma quantidade escalar, exigindo apenas a especificacdo de
uma magnitude para descri¢io completa, o campo representado pela equagdo acima ¢

escalar.



3.1.4. Campo de Velocidade

Vimos que a hipotese do continuo levou diretamente 4 nogiio de campo de massa
especifica. Outras propriedades dos fluidos também podem ser descritas por meio de

campos.

Ao lidarmos com fluidos em movimento, estaremos necessariamente preocupados com
a descriciio de um campo de velocidade. Na Figura 2a definimos a velocidade do fluido
no ponto C como a velocidade instantinea no centro de gravidade do volume, 6V', que
instantaneamente envolve o ponto C. Se definirmos uma particula fluida como uma
pequena massa do fluido, de identidade fixa,de volume V', segue-se que a velocidade
no ponto C é definida como a velocidade instantinea da particula fluida que, num dado

instante, estd passando pelo ponto C. A velocidade em qualquer ponto do campo do

escoamento ¢ definida de modo similar. Num dado instante, o campo de velocidade, v,
¢ uma fungfio das coordenadas espaciais x, y, z. A velocidade em qualquer ponto do
escoamento pode variar de um instante a outro. Entdo, a representagdo completa da

velocidade ¢ dada por
17 = V(x, y,z,t)

Velocidade é uma quantidade vetorial, exigindo uma magnitude e uma dire¢fio para uma

completa descrigdo; por conseguinte, o campo de velocidade é um campo vetorial.

O vetor velocidade, V', pode também ser escrito em termos dos seus trés componentes

escalares. Denotando os componentes nas direges, x, y, Z por u, v, w, entéo

—

V=ui +vj+wk

Em geral, cada componente, #, v e w, serd uma fungo de x, y, z e .

Se as propriedades em cada ponto de um campo de escoamento nfio mudam com o
tempo, o escoamento ¢ denominado permanente. Matematicamente, a defini¢do de

escoamento permanente €



n_,
ot

onde 77 representa qualquer propriedade do fluido.

3.1.5.Campo de Tenséo

As tensdes num meio resultam das forcas que atuam em alguma porgdo dele. O conceito
de tensdo nos d4 uma forma conveniente de descrever o modo pelo qual as forgas
atuantes nas fronteiras do meio sdo transmitidas através dele. Como a for¢a € a area sio
ambas as quantidades vetoriais, podemos prever que o campo de tensdo ndo serd
vetorial. Veremos que, em geral, sdo necessarias nove quantidades para especificar o

estado de tensfo num fluido.

Imaginemos agora uma superficie qualquer no interior de um fluido em escoamento, e
considere a forca de contato transmitida de uma face da superficie para a outra.
Considere uma porg¢io, 84, da superficie na vizinbanga do ponto C. A orientaggo de S
é dada pelo vetor unitério, #, mostrado na Figura 3. O vetor 7 € normal a superficie

apontando para fora dela.

Figura 3 O conceito de tensdo num meio continuo.
A forca, S6F, atuando sobre 84, pode ser decomposta em duas componentes, uma

normal e a outra tangente a drea. Uma tensfo normal &, e uma tensdo cisathante 7,

sAo entfo definidas como

oF,

n

= lim
§4,-0 §An

o

n
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O indice n na tensfio foi incluido para lembrar que as tensdes estdio associadas com a

superficie 84 que passa por C, tendo uma normal com a diregdo ¢ sentido de 7. Para

qualquer outra superficie passando por C, os valores das tensdes séo diferentes.

Ao lidarmos com quantidades vetoriais tais como forga, é usual considerar as
componentes num sistema de coordenadas cartesianas. Em coordenadas ortogonais,
podemos considerar as tensdes atuando em planos cujas normais orientadas para fora

estdo nas diregdes dos eixos x, y ¢ z.

; 5. ] 7.,
)
e 5!’*‘ ?u
SF. 4
e
/l ¥ Lot |
{1} Componentes da forga {#) Componrentes da tensio

Figura 4 Componentes da forga e da tensdo sobre um elemento de drea 04,
Na Figura 4 consideramos a tensdo no elemento d4, cuja normal orientada para fora
est4 na direcdio do eixo x. A forca, dF , foi decomposta em componentes ao longo de

cada eixo coordenado. Dividindo a magnitude de cada componente da forca pela area,

&4, e tomando o limite quando &4, tende a zero, definimos as trés componentes da

tensdo mostradas na Figura 45:

= li x
T A408 A

o

SF,
T, = oy
Tos408 A,
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Utilizamos indice duplo para designar as tensdes. O primeiro indice indica o plano no

qual a tensdo atua. O segundo indice indica a diregfo na qual a tensfo atua.

Ao considerarmos a drea elementar 84, , definiremos as tensdes o, 7, € 7,.; a
utilizaciio da 4rea clementar 54, levaria, de modo anélogo, & defini¢do de o, 7, €

sz'

A tensdo num ponto é especificada pelas nove componentes, a saber:

O xy xz
T Op Ty
T, y T

onde ¢ foi usado para denotar uma tensfo normal, e 7 para denotar uma tensdio de

cisalhamento. A notagio para designacdo de tensZo é mostrada na Figura 5.

6,

Figura 5 Notagdo para tensdes.

Na Figura 5, todas as tensdes foram tracadas como positivas. As componentes das
tensdes serfio negativas quando o seu sentido e o plano no qual atuam tiverem sinais

opostos.



3.1.6. Viscosidade

12

Consideremos o comportamento de um elemento fluido entre duas placas infinitas como

mostrado na Figura 6.

3

f 2t
v M &l . Foiga, &F,
| : ; —7 velocidade, Su
L -Sl\ _," | f:l

Elemento fluide |/ : /. Elemento fiuido

y no instante r ;;' W |/ neinstante s + &
i/ I
I/ |/
1/ I/
o ¥ L e, o T R —

N 0

Figura 6 A deformagio de um elemento fluido.

A placa superior move-se com velocidade constante, di , sob a influéncia de uma for¢a

constante, JF, . A tensdo de cisalhamento z,,, aplicada ao elemento fluido ¢ dada por

1) Fx dF;
= lm =—=
¥ 54,508 Ay dAy

T

onde &4, é a drea do clemento fluide em contato com a placa, ¢ JF, €2 forca exercida

pela placa sobre o elemento. Durante ¢ intervalo de tempo &, o elemento fluido ¢

deformado da posigio MNOP para a posi¢io M’NOP’. A taxa de deformacéo do fluido
¢ dada por

taxa de deformagdo = lim oo gea
st-20 St at

Para calcular a tensdo de cisalhamento, 7, , é desejavel expressar da/dt em fungéo de

quantidades prontamente mensuréaveis. A distdncia &/, entre os ponto M e M’ € dada por

ol = du.ot

ou, para peguenos dngulos

8l = .50
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Igualando essas duas expressdes,

Sa  ou

ER
Tomando os limites em ambos os lados da igualdade, temos

da_ du

dt  dy
Dessa forma, o elemento fluido da Fig 3.6, quando submetido a tensdo de cisathamento,

7., experimenta uma taxa de deformacdo dada por du/dy .

¥

3.1.7. Fluido Newtoniano

Os fluidos nos quais a tensdio de cisalhamento ¢ diretamente proporicional a taxa de

deformacao sio chamados fluidos newtonianos.

Os fluidos mais comuns, como ar, agua, s3o newtonianos em condigGes normais. Se o

fluido da Fig 3.6 for newtoniano, entio

A constante de proporcionalidade na equagfo acima ¢ a viscosidade absoluta, u.

Portanto, a lei de Newton da viscosidade ¢ dada, para um escoamento unidimensional,

por

3.1.8. Escoamento Laminar e Turbulento

Qs regimes de escoamentos viscosos sdo classificados em laminar ou turbulento, tendo
por base sua estrutura. No regime laminar, a estrutra do escoamento € caracterizada pelo

movimento snave em liminas ou camadas. A estrutura do escoamento no regime
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turbulento é caracterizada por movimentos tridimensionais aleatérios de particulas

fluidas, em adi¢fo a0 movimento médio.

No escoamento laminar nic ha mistura macroscopica de camadas adjacentes ao fluido.

Em um escoamento turbulento essas camadas adjacentes acabam se interferindo entre si,

fenémeno causado pelas flutuagdes de velocidades presentes.

Pode-se obter um quadro mais quantitativo da diferenga entre os escoamentos laminar e

turbulento examinando-se a saida de um dispositivo sensivel, medidor de velocidade,

imerso no fluxo. Se medirmos a componente x da velocidade num ponto fixo de um

tubo, tanto para escoamento laminar quanto para turbulento, ambos permanentes, os

registros graficos da velocidade versus tempo aparecerfio como na Figura 7.

{«) Espoamento larminar

i
— dt

= >

- o —

{b} Esconmenio permanente furbulento

H

Figura 7 Variacdo da velocidade axial com o tempo.

Para o escoamento laminar, a velocidade num ponto permanece constante com o tempo.

No turbulento, o grafico da velocidade indica flutuagdes aleatdrias da velocidade

instantinea, #, em torno da velocidade média # . Podemos considerar a velocidade

instantanea, #, como a soma da velocidade média, # , e a componente flutuante, .

u=u-+u

Como o escoamento ¢ permanente, a velocidade média, # , nfio varia com o tempo.

Embora muitos escoamentos turbulentos sejam permanentes na média, a presenca das

flutuagbes aleatdrias torna sua andlise extremamente dificil.

Num escoamento unidimensional laminar, vale a seguinte relagéo,
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; _ﬂdu
mas para um escoamente turbulento em que o campo de velocidade média ¢
unidimensional, esta relacdio simples nfio é mais valida. Flutuagdes aleatdérias e
tridimensionais de velocidade (u',v' e w') transportam quantidade de movimento

através das linhas de comrente do escoamento médio, aumentando a tensdo de

cisalhamento efetiva.

No escoamento turbulento nfo ha relacdio simples entre o campo de tensdes de
cisalhamento e o campo de velocidade média. Flutuacdes de velocidade no escoamento
turbulento resultam no transporte de quantidade de movimento entre camadas
adjacentes de fluido. Essa transferéncia de quantidade de movimento pode ser vista
como uma forga por unidade de 4rea, uma tensdo aparente, que deve ser adicionada a

tensdo causada pelos gradientes da velocidade média.
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3.2. Enfoque Diferencial

O enfoque integral nas equagdes basicas da mecanica dos fluidos ¢ particularmente util
quando estamos interessados no comportamento genérico de um campo de escoamento
e nos seus efeitos sobre dispositivos quaisquer. Contudo, o método de aproximacfo
integral nfio nos capacita a obter conhecimentos ponto a ponto do campo de

escoamento.

Para obter esse conhecimento de forma detalhada, devemos aplicar as equagdes dos
movimentos dos fluidos na forma diferencial. Nesta parte, desenvolveremos equagdes
diferenciais para a conservagio da massa e a segunda lei de Newton. Como temos
interesse na formulagio de equagbes diferenciais, a nossa analise serd em termos de

sistemas e volumes de controle infinitesimais.

3.2.1.A conservagdo da massa

Verificamos que a hipotese do continuo levava diretamente a uma representagcdo de
campo das propricdades dos fluidos. Os campos de propriedades sdo definidos por
funcdes continuas das coordenadas espaciais e do tempo. Os campos da massa
especifica e da velocidade sdo relacionados através da conservagdo da massa.
Deduziremos a equagfio diferencial para a conservagdo da massa em coordenadas
retangulares, aplicando a lei de conservagdio da massa a um volume de controle

diferencial.

O volume de controle escolhido é um cubo infinitesimal com lados de comprimento df,

dy, dz, conforme mostrado na Figura 8.

o Volume de controlg

=)
w0

x!.!

A

-~

Figura 8 Volume de controle diferencial.
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A massa especifica no centro, O, do volume de controle ¢ p e a velocidade ¢

V=ui +vj +wk .

A fim de avaliar as propriedades em cada uma das seis faces da superficie de controle,

usaremos uma expansio em série de Taylor em relagdo ao ponto O. Por exemplo, na

face direita,

op\dx (8°p)1 dsz
=p+| |+ == —| +
p)x+a’xi2 p (ax) 2 {BJCZJQ,!(Z

Desprezando os termos de ordem superior, podemos escrever

Op \dx

. | — [—

p)x+dx!2 Y (&] 5

e
W) = u+(%]fix_
x+dx/2 /2
op oOu .

onde p, u, —e a sdo todos avaliados no ponto O. Os termos correspodentes na

face esugerda sfio

P = p+| 2 (—ﬁ] = p—(a—p]@

ox 2 ox )2
ou dx Ou \dx
U)o =UT F ey =u— Pl

O enunciado da conservagio da massa diz que a taxa liquida de fluxo de massa para fora
da superficie de controle somada com a taxa de variagio de massa dentro do volume de

controle deve ser igunal a zero.
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A fim de avaliar o primeiro termo dessa equacgdo, devemos avaliar jpf’-dA ; temos
sC

que considerar o fluxo de massa através de cada uma das seis faces da superficie de

controle. Os detalhes dessa avaliagdo sdo mostrados a seguir.

Esquerda(—x) = —l: o— (%OJ %:l[u - (%J %}dy.dz

Simplificando a expressdo, ficamos com

Esquerda(—x) = —pu.dy.dz + 1 u[a—p) + p[@] dx.dy.dz
2 Ox Ox

Analogamente, podemos deduzir os fluxos de massa através das outras CIineo

superficies:

Posterior(—z) = —pw.dx.dy + %[W a—p) + p[;ﬂ]]dx.dy.dz
z

Frontal(+2) = pw.dx.dy + %[w(a_p
Z

Entdo,

- AZ M)A ) A s

ou
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[p7-da= [a"” I/ LA PV
e &x oy o=

As velocidades através de cada face foram admitidas como estando nos sentidos

positivos dos eixos coordenados. Termos de ordem superior foram desprezados.

Vemos que a taxa liquida de fluxo de massa para fora da superficie de controle ¢ dada

por

9 oy 100l B
ox oy oz

A massa dentro do volume de controle, em qualquer instante, ¢ o produto da massa por

unidade de volume, p, pelo volume, dx.dy.dz. Entdo, a taxa de variagdo de massa

dentro do volume de controle ¢ dada por

% dx.dy.dz
ot

Portanto, a equacfo diferencial para conservagfio da massa € entéo

a’OM+(‘7\‘0‘;+6pw+6—‘0=0
ox dy 0z Ot

A equagdo acima é comumente chamada de equagdo da continuidade.
Uma vez que o operador matemético, V € dado por

V=f—?—+}'£+l€i
ox oy Oz

entfo

Ou | 9 OOV _ . o
ox Oy Oz

¢ a conservagio da massa pode ser escrita como
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. ap
v+ L ¢
Sar

Para escoamentos em regime permanente, todas as propriedades dos fluidos sfo, por

definicdo, independentes do tempo; assim %:o. Dessa forma, a equagfo da

continuidade pode ser escrita como

6pu+6pv+8pw=0
ox oy Oz

Ou de uma forma mais simplificada
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3.2.2. Movimento de um elemento fluido

Antes de formular os efeitos de forcas sobre o movimento dos fluidos, vamos considerar
primeiro o movimento de um elemento fluido num campo de escoamento. Por
conveniéncia, seguimos um elemento infinitesimal de identidade fixa (massa), como

mostrado na Figura 9.

i o}

v

Figura 9 Elemento infinitesimal de fluido.
A medida que o elemento infinitesimal de massa, dm, move-se no campo de
escoamento, diversas coisas podem lhe acontecer. Certamente o elemento translada; ele
desloca linearmente de um ponto x, y, z para um diferente, x;, y;, z;. O elemento também
pode girar; a sua orientagdo, como mostrado na Figura 9, onde seus lados estdo
paralelos aos eixos de coordenadas, x, y, z, pode mudar como resultado de uma rotagéo
pura em torno de qualquer um dos eixos coordenados. Além disso, o elemento pode
deformar-se. A deformagéo pode ser subdividida em duas partes — linear e angular. A
primeira envolve uma mudanca da formas sem mudangas na orientagéo do elemento:
uma deformac#io na qual os planos do elemento que eram originalmente perpendiculares
entre si {(por exemplo, o topo ¢ o lado do elemento) permanecem perpendiculares. A
deformacdio angular envolve uma distorgfo do elemento na qual os planos que eram
originalmente perpendiculares nfio mais permanecem perpendiculares. Em geral, um
elemento fluido pode sofrer uma combinacgfio de translagfio, rotagfio e deformacgdes no

curso do seu movimento.

Essas quatro componentes do movimento dos fluidos séo ilustradas na Figura 10, para o

movimento no plano xy.
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Figura 10 Representacdo grdfica dos componentes do movimento de fluido.

Para um escoamento genérico tridimensional, movimentos similares da particula seriam
observados nos planos yz e xz. Para translagio ou rotagio pura, o elemento fluido
mantém a sua forma; nfio ha deformagfio. Desse modo, tensdes de cisalhamento néo
surgem como resultado de translagdo ou rotagdo pura. Consideremos separadamente

translagéo, rotago e deformacio do fluido.

3.2.2.1. Translagcéo de Fluido

Uma descri¢do geral da aceleragio pode ser obtida considerando-se uma particula em
movimento num campo de velocidade. A hipotese basica da mecénica dos fluidos do
continuo levou-nos a uma descri¢do do campo de escoamento no qual as propriedades

desse s3o definidas por fungdes continuas das coordenadas espaciais e do tempo. Em
particular, o campo de velocidade € dado por V= I7(x, y,z,t). A descri¢do de campo €
muito poderosa, ja que informagSes para todo o escoamento sdo fornecidas por uma

Unica equagfo.

O problema, entdo, consiste em reter a descri¢io de campo para a propriedades do
fluido e obter uma expressdo para a acelerag@io de uma particula a4 medida que ela se

move num campo de escoamento. Enunciado de modo simples, o problema €:
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Dado o campo de velocidade, V= I7(x, y,z,t), determine a aceleragfio de uma particula

fluida, a .

Considere uma particula movendo-se num campo de velocidade. No instante /£, a
particula esta na posi¢do x, y, z € tem uma velocidade correspondente a velocidade

naquele ponto no espago, nesse instante,
Vp], e V(x, vz, t)

Em ¢+dr, a pariicula moveu-se para uma nova posigio, com

coordenadas x + dx, y + dy, z + dz , ¢ tem uma velocidade dada por
V g =V + e,y +dy,z + dz,t +dt)

Isto é mostrado na Figura 11.

Trajeiora da particula

v
Particula no )
instante, ¢

w”‘
L
KPamcula 7o
instante, ¢+

———

Figura 11 O movimento de uma particula num campo de escoamento.
A velocidade da particula em ¢ (posigéio 7) € dada por T7p = I7(x, ¥, 2z, z‘). Entio dI_/;, ,a
variacdo da velocidade da particula, ao mover-se da posigdio 7 para 7 + dr , ¢ dada por
ov oV av

dv, =——adx +ﬁdy 4 —dz +——dt
P Y ey T s P o

A aceleraciio total da particula € dada por

“Ta T d oy At oz de o

s W Wk, Wb, oV,

Como
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fjic..i”_ =U dy—p =V & =w
dt dt dt
temos

v, oF oV oV oF
= =u——- [ CR—— —

a v +w +
i ox oy oz ot

Para lembrarmo-nos de que o calculo da aceleragéo de uma particula fluida num campo

de velocidade requer uma derivada especial, ela recebe o simbolo DV [ Dt . Assim,

A derivada, DV /Dt , definida acima ¢ usualmente chamada de derivada substancial,
para nos lembrar de que é calculada para uma particula de “substincia”. E também

frequentemente chamada de derivada material ou de derivada de particula.

A partir da equagdo (I) reconhecemos que uma particula fluida movendo-se num campo
de escoamento pode sofrer aceleragio por dois motivos. Ela pode ser acelerada porque ¢
transportada por convecgdo para um a regido de velocidade mais alta (ou mais baixa).
Por exemplo, no escoamento permanente através de um bocal, por definigdo, o campo
de velocidade nfio € uma fungdo do tempo, uma particula acelerar-se-4 enquanto se
move através do bocal. Ela ¢é transportada para uma regido de velocidade mais alta. Se
um campo de escoamento é nfo permanente, uma particual fluida passard por uma

aceleracio adicional “local”, pois o campo de velocidade € fungfo do tempo.
Y

O sifnificado fisico dos termos da equagdo (I} é

% = aceleragfio total da particula

oV N .
u r + v— + w-—— = aceleracdo convectiva

ady 0z

Cld =aceleracéo local
ot
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A aceleragfio convectiva pode ser escrita como uma tinica expressio vetorial utilizando-

se o operador vetorial gradiente, V.

Assim,

u%ﬁ+v%§-+w%—f=(ﬁ-vy

Portanto, a equagio (I) pode ser escrita simplesmente como

Para um escoamento tridimensional em regime permanente, a equagéo (1) fica,

DV eV oV oV
=yt V— W
Dt ox ay az
que ndo ¢ necessariamente zero. Assim, uma particula fluida pode estar sujeita a uma

accleracdio convectiva devido ao seu movimento, mesmo num campo de velocidade

constante.
Podemos ainda escrever a equagdo (I) com suas componentes escalares.

. Du ou  Ou ou ou
d, =—=U—+V—+W—+—
P Dt ax oy 0z Ot
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3.2.2.2. Rotagdo de um Fluido

Uma particula movendo-se num escoamento tridimensional genérico pode girar em
torno de todos os trés eixos coordenados. Entéo, a rotagfio da particula é uma quantidade

vetorial e, em geral,
b=iw, +jo,+ko,

onde @, ¢ arotagao em torno de eixo x, @, € a rotagao em torno deeixoye @, ¢ a

rotagao em torno de eixo z. O sentido positivo de rotagdo é dado pela regra da méo

direita.

Para avaliar as componentes do vetor rotagdo de uma particula, nos definimos a
velocidade angular sobre um eixo como a velocidade angular média de dois segmentos
diferenciais de linha inicialmente perpendiculares entre si, em um plano perpendicular
a0 eixo considerado. Dessa forma, a componente da rotagdo sobre o eixo z ¢ igual a
velocidade angular média de dois segmentos infinitesimais de linha, inicialmente

perpendiculares entre si no plano xy.

A fim de obter uma expressio matemdtica para @, considere 0 movimento de um
elemento fluido no plano xy. As componentes da velocidade em cada ponto no campo

de escoamento sdo dadas por u(x,y) € v(x,y). A rotagio de um elemento fluido em tal

campo ¢ ilustrada na Figura 12.

v -—-lagl*—
]

i
- APl
& ] :

‘v’"\‘ “‘\ 1\ Ay J
. A N R i -
% ke 1 o 7 Ao Ay
\/// ‘\ \; = ,,_w"”" ;’ Ay d

%, I 4
5 pid ¥
N 1
\
O Y
—_— Y

Figura 12 Rotacio de um elemento.
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As duas linhas perpendiculares, oa ¢ ob, girarfio para as posi¢des mostradas durante o
intervalo de tempo Af, somente se as velocidades nos pontos «a e b forem diferentes da

velocidade em o.

Consideremos primeiro a rotagdo da linha ao, de comprimento Ax. A rotagdo dessa
linha deve-se a variacdes da componente y da velocidade. Se a componente y da

velocidade no ponto o for tomada como v,, entdo a componente y da velocidade no

ponto a pode ser escrita, usando-se uma expansfio em série de Taylor, como

]

v=yv +iv—Ax
ox

A velocidade angular da linha oa ¢ dada por

Como
An= @AxAt
Ox
. (6v/3x)AxAt/Ax ov
w,, = lim Al
A0 Al ax

A velocidade angular da liha ob é obtida de forma aniloga. A rotagfo do segmento de

linha ob, de comprimento Ay, resulta de variages na componente x da velocidade. Se a
componente x da velocidade no ponto o for tomada como u,, entdo a componente x da

velocidade no ponto b pode ser escrita como

U=u, +-a£Ay
%

A velocidade angular da linha ob € dada por

o, = im 2L < i A5/
A0 Af A0 Ap
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Como

Aé = e AyAt
&y

(O )ayArity oy
A0 AfF B ay

(O sinal negativo foi introduzido para dar um valor positivo a @,_,. De acordo com a a

regra da mio direita, a rotagfo anti-horaria € positiva.)

A rotagiio do elemento fluido em torno do eixo z é a velocidade angular média de

quaisquer duas linhas perpendiculares entre si, oa € 0b, no plano xy. Entéo,

I{dv ou
@, == —=—
2iox oy
Considerando-se a rotagio de um par de linhas perpendiculares nos planos yz ¢ xz,

pode-se demonstrar de forma similar que

1{éw év 1(6@: an
a)xz— —_— o =—| ———
208y oz Yo2\dz ox

Entdo & =iw, + jo, + ka, , torna-se

Reconhecemos o termo entre colchetes como

curlV =V xV

Entéio, em notagéo vetorial, podemos escrever
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Uma particula fluida movendo-se, sem rotagfio, num campo de escoamento, nfo pode
desenvolver rotagdo sob a a¢do de uma forga de campo ou de forgas normais
superficiais (de pressfo). O desenvolvimento de rotagdo numa particula fluida,
inicialmente sem rotago, requer a agfio de uma tensfo de cisalhamento na superficie da
particula. Uma vez que essa fensdo é proporcional & taxa de deformacdo angular,
concluimos que uma particula inicialmente desprovida de rotagiio nfio a desenvolvera
sem uma simultinea deformagfo angular. A tenso de cisalhamento é relacionada com a
taxa de deformagio angular pela viscosidade. A presenca de forgas viscosas significa

que o escoamente ¢ rotacional.

A condigdo de irrotacionalidade pode ser uma hipétese vélida para aquelas regides de
um escoamento em que essas forgas viscosas sdo despreziveis. Um exemplo claro disso

¢ a regidio fora da camada limite no escoamento sobre uma superficie solida.

O fator % pode ser eliminado na equacdo (II) definindo-se uma grandeza chamada

vorticidade, ¢ , como sendo duas vezes o valor da rotagfio,
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3.2.2.3. Deformacdo Angular

A deformagiio angular de um elemento fluido envolve variagfes no dngulo entre duas

linhas mutuamente perpendiculares no fluido.

v
— af
fe H
4
£
=
A=y ;’\y’ .
R At i’ = TAw A
g e
/ ,"‘.-"’“'Af !‘f
;{-""f ‘.f
’
¥
a

Figura 13 Deformacdo angular de um elemento fluido.
Na Figura 13 notamos que a taxa de deformagio angular do elemento fluido no plano xy

¢ a taxa de decréscimo do dngulo y entre as linhas oa e ob. Visto que durante o

intervalo de tempo Af, Ay =y —90°=—(Aa+Af), a taxa de deformagdo angular ¢

dada por
_dy _de df
a d dt
Mas,
de . Aa ., Ap/Ax . (dv/ox)AxAt/Ax  ay
—=lim =lim = lim =
dt A0 Ap A0 Af At—0 At o
e

ou/
AP _ 1oy B _pi 88Ty, (1B Ay0I By O

dr  a-0 Af a0 Af Ar—0 At oy

Consequentemente, a taxa de deformagio angular no plano xy €

/A A

+ —
dt dt di ox Oy
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A tensio de cisalhamento relaciona-se com a taxa de deformagfio angular através da
viscosidade do fluido. Num escoamento viscoso (onde gradientes de velocidade estéo
presentes), & altamente improvéavel que ov/0Ox seja igual e oposta a 0u/dy em todo o
campo do escoamento. A presenca de for¢as viscosas significa que o escoamento ¢

rotacional.

3.2.2.4. Deformacé&o Linear

Durante a deformagio linear, a forma de um elemento fluido, descrita pelos dngulos de
seus vértices, permanece imutavel, visto que todos os 4ngulos retos continuam a sé-lo.
O elemento ird variar de comprimento na diregfio x apenas se ou/ox for diferente de
zero. Analogamente, uma mudanga na dimensdo y exige um valor diferente de zero para
&v/dy, ¢ uma mudanga na dimensdo z exige um valor diferente de zero para ow/0z.
Essas quantidades representam as componentes das taxas longitudinais de deformagéo
nas dire¢bes x, y e z, respectivamente. Mudangas no comprimento das faces podem
produzir alteragdes no volume do elemento. A taxa local, instantdnea, de dilatagdo
volumétrica ¢ dada por
ov  ow

Taxa de dilatagfo volumétrica = % bt —=V.V

oy 0Oz

Para escoamento incompressivel, a taxa de dilatagdo volumétrica € zero.

3.2.3. Equacgéo da Quantidade de Movimento

Uma equagéio dinfmica descrevendo o movimento do fluido pode ser obtidda aplicando-
se a Segunda Lei de Newton a uma particula. Para deduzir a forma diferencial da
equacdo da quantidade de movimento, aplicaremos a Segunda Lei de Newton a uma

particula fluida infinitesimal de massa dm.

Lembremos que a Segunda Lei de Newton para um sistema € dada por

P e fi’EJ
dt sistema
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onde a quantidade de movimento, P , do sistema, ¢ dada por

P = jf.dm

sistema
miassal sistema)
Entdo, para um sistema infinitesimal de massa dm, a segunda lei de Newton pode ser
escrita como

dF = dm
dt sistema

Tendo obtido uma expressdo para a aceleragdio de um elemento fluido de massa dm
movendo-se num campo de velocidade podemos escrever a Segunda Lei de Newton

como a equagéo vetorial

dF =dm.=~— =dm| u—+v—+w
Dt

DV ov v a_ﬁ+_a£
ox oy 0z ot

} (1)

Precisamos agora obter uma formulacdo adequada para a forga, dF', ou suas

componentes, dF,, dF, e dF,, atuando sobre o elemento.

3.2.3.1. Forgas atuando sobre a particula

Lembre-se que as forcas que atuam sobre um elemento fluido podem ser classificadas
como de campo ou de superficie; as de superficie incluem tanto as normais quanto as

tangenciais (de cisalhamento).

Consideremos a componente x da forga agindo sobre um elemento diferencial de massa
dm ¢ volume dV =dx.dy.dz. Apenas aquelas tensdes que atuam na dire¢dio x darfio
origem a for¢as superficiais na diregio x. Se as tensdes no centro do elemento
diferencial forem tomadas como o, 7,7, , as tensGes atuantes na direcdo x em cada
face do elemento (obtidas por um desenvolvimento em série de Taylor em relagéo ao

centro do elemento) sfio conforme mostrado na Figura 14.
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Figura 14 Tensdes na diregdo x sobre um elemento fluido.

Para obter a for¢a de superficie liquida na dire¢fio x, dF;_, devemos somar as forgas

nessa dire¢do. Entéo,

dFy, =|o, + 00y dr dvdz—| o, — 00 dx dy.dz
) ox 2 ox 2

0 )
+| T, + T Q d.dz — Ty — i Q dx.dz
dy 2 ay 2

+ [z‘zx +%@]dx.dy —[rzx —a&@]ﬁ.dy
oz 2

Simplificando, obtemos

ot
dF, =| 2% o O Ny iy
o X &y &z

Quando a forga da gravidade € a tnica for¢a de campo atuante, entfio a forga de campo

por unidade de massa é igual a §. A for¢a liquida na diregéio x, dF,, € dada por

i or,,
de=dFBI+qux=(ng+ Tox (20 +aT

= \dxdy.dz IV
" 5 az] v.dz (IVa)

Pode-se deduzir expressdes similares para as componentes da forga nas direcdes y e z:
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or, o, 01,
dF, =dFy +dF; =|pg, + + + - dx.dy.dz (IVb)

&x oy 0
dF. = dF, +dF. =| pg. + 20y O L % \p i (Vo)
z Bz Sz = pgz ax @} 32 b -

3.2.3.2. Equacgéo Diferencial da Quantidade de Movimento

Formulamos expressdes para as componentes, dF,, dF, ¢ dF,, da forca dF , atuante

sobre o elemento de massa, dm. Se substituirmos nossas expressdes (IV) nas
componentes x, ¥ ¢ z da equacfio (III), obteremos as equacdes diferenciais do

movimento,

arxy +GW +arzy =p{av ov v 8v]

— UV W—

G VIR VP a Y oy e
or, 07, o, ow ow ow  Ow

o g s SRS ! (R Y TRALAES VAR Vi
ax oy e e e oy ez

As equagdes acima sfo as equagdes diferenciais do movimento de qualquer particula
fluida que satisfaga a hipétese do continuo. Antes que elas possam ser usadas na solugéio
de u, v ¢ w, devem ser obtidas expressdes adequadas para as tensdes, em termos do

campos de velocidade e de pressao.

3.2.3.3. Fluidos Newtonianos: Equagbes de Navier-Stokes

Para um fluido Newtoniano, a tensdo viscosa ¢ proporcional a taxa de deformacfio por
cisalhamento (taxa de deformacéo angular). As tensdes podem ser expressas em termos

dos gradientes de velocidade e das propriedades dos fluidos como segue:

_ _ fov ou
z’xy—ryx—,u a'i'g



S L4
=t T S T
o = ou ow
X Xz ﬂ\az ax

[ ——p——JuV-I-/'+2lu@~

ox
o, =—p-ZuV-V+2u—
T, =—p-ZuV-V+2u—
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onde p ¢ a pressdo termodindmica local. A pressdo termodindmica ¢ relacionada com a

densidade e temperatura pela relagfio termodindmica usualmente chamada de equagio

de estado.

Se essas expressdes forem introduzidas nas equagSes diferenciais do movimento,

obteremos:

Dw_
P Dt

Op N

ou 2
2 V.V
_#( ox 3 H

d
%y

ou ov

ke

+
dy ox

R~
Ao )| |y 3
[@+@] 2 8v+6wj+
Ao )| oMl oy

=)

o[ (aw auﬂ
+_ —_— -
oz &x Oz
helles
"% 5

3]
oz

3]

Estas equag¢Bes do movimento sio chamadas de equagdes de Navier-Stokes.



36

3.3. Conceitos Basicos do Escoamento Externo

3.3.1. Arrasto

O arrasto ¢ a componente da forga sobre um corpo agindo paralelamente a dire¢do do

movimento.

O coeficiente de arrasto, C,,, € definido como:

onde F, é a for¢a de arrasto, p ¢ a densidade do fluido, V' ¢ a velocidade do

escoamento e A4 ¢ a drea caracteristica do corpo em quest&o.

3.3.2. Sustentagéao

A sustentacdio € a componente da forga aerodindmica perpendicular ao movimento do

fluido.

O coeficiente de sustentagfio, C, , ¢ definido como:

onde F, € a forga de sustentagfio, o ¢é a densidade do fluido, ¥ € a velocidade do

escoamento ¢ 4 ¢ a irea caracteristica do corpo em questdo.
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4. FUNDAMENTOS DA DINAMICA DE FLUIDOS
COMPUTACIONAL

4.1. Aspectos Gerais

A base da teoria apresentada nas se¢des seguintes foi extraida das referéncias [4] e [3], e
devem ser consultadas por aqueles que desejarem se aprofundar um pouco mais nos

conhecimentos aqui expostos.

A dindmica dos fluidos computacional resolve basicamente as equagdes mostradas a

seguir:
Equacdo da Continuidade

op

——+div(p¥)=0
o v(pv)

Equacdo da Quantidade de Movimento

O P TRy T TR e Ty
Direcio y: g+ u@.p v@..;. wé.v__ +aTxy+(30'w+arxz
¢ao y: patpaxpaypé‘z Prg, pw P Py
Direcéio z: @4. @+ v@+ w@— +3sz+afyz+30u
B0z Y S P e TP Y S T
Equacdo de Estado
r=7f(p,T)

Equacdo para Efeitos Térmicos ou de Compressibilidade

{ae de oe aeJ (627’ T T
P +w =k

P + > + & ]+y<b—p.div(17)
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onde @ ¢ a fun¢éo dissipagio, dada por

Kau)z (avf [Bw]?} (6‘1} 6uJ2 (814; asz [au W)Z 2
O=2f| — | +|=—| +|=—| |+ =+=—| +H|—+— | +| —+— | —Zdv()
Ox oy 0z ox oy oy oz 0z & 3

Portanto, procuramos resolver essas equagdes de tal forma que as

varidveis p,u,v,w, p,T sejam completamente determinadas, para o campo de

escoamento estudado.

A partir das equagSes mencionadas acima, pode-se escrever a equagdo geral do método

dos volumes finitos, dada por:
5 , - X
a(pgﬁ) +div(pg¥) = div(Tgrad@)+ S

onde ¢ pode ser qualquer uma das varidveis a ser determinadas, ou seja, pode ser

pu,v,w,p,T.

A equagfo acima pode ser interpretada da seguinte maneira:

Taxa de Taxa de Taxa de Variagéo de ¢
variagdo de ¢ convecgdo de  _ variago de ¢ + devido a
{Termo ¢ no volume devido a presenga de
transiente) de controle difusfio fontes

Figura 15 Interpretagdo da equagdo geral do método dos volumes finitos.

A tabela abaixo ilustra melhor as opgbesde I', ¢ € 5.



Adicionados o efeito de turbuléncia descritos

Quantidade de Movimento tem a seguinte forma:

SiE

d 9
5, (o )+ =—(pu; )=

J

ox,

B =
quagio ?e o r Sé
conservagio
Massa global 1 0 0
B, +3(;;§3—3,uv V)+
Quantidade de u ox\' ox 3
movimento em X H o ov) 0 ow)y) oP
— /1 —_— | — ‘u —_— | ——
oy\' ox,; Oz ox ) Ox
B +i[y@_—pv-VJ+
: Y8 oy 3
Quantidade de v y Y
movimento em y H %, ou 0 ow) oP
ox\" oy ) oz\" oy ) oy
B, +i[y?-ﬂ—%ﬂv VJ
Quantidade de B dz\' 9z 3
movimento em z H 0 ou 5} ovy OP
ox\" ¢z) oy\ 0z) Oz
1 DP u
: ——+—D
Energia T k/c, ¢, D <,
Massa de um C oD 0
componente
Tabela 1 Valoresde ¢, " ¢ S*.
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no item 3.1.8 a nova equagio da

ou
o 3 Vx| o,

onde o termo — ,ou ', € conhecido como tensdo de Reynolds.

—puu,

Esse termo pode ser modelado através da aproximagio de Boussinesq, representada por:

Ou,
pur J_ﬂl[

S

ou,
_[pk'*’ﬂr EIJCSIJ
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4.2. O método dos volumes finitos

O Método dos Volumes Finitos (MVF) foi desenvolvido para a analise de problemas
complexos de Mecénica dos Fluidos. As equagdes sdo obtidas através da realizagfo de
balangos da propriedade em questdo (seja ela massa, quantidade de movimento,
entalpia, etc.) nos volumes elementares, ou volumes finitos, ou entfio; integrando sobre

um volume elementar, no espago € no tempo.

O fato das equagdes aproximadas representarem a conservagfio no dmbito de volumes
elementares vem do fato que a solugio da equagfo diferencial (por exemplo: Equagéo
de Navier-Stokes) representa a conservagdo da propriedade num ambito de ponto

(infinitesimal).

Para obter a solugfo ¢ utilizada uma técnica de volume de controle que consiste:

. Divisdo do dominio continuo em volumes de controles discretos usando a
malha computacional;
. Integracdo das equagdes nos volumes de controle individuais para

construir equacgBes algébricas para as varidveis discretas dependentes, fais como:

velocidades e temperatura;

. Linearizagdo das equagdes discretas e solugdo do sistema de equagdes

lineares resultante para produzir valores atualizados das variaveis independentes.

A integragio das equagOes diferenciais serd mostrada para um conjunto de equagdes
unidimensionais, sendo que estas podem ser facilmente estendidas para o caso
bidimensional ou tridimensional. Sejam as equagdes diferenciais para continuidade,

quantidade de movimento e quantidade escalar ¢:

ap . =
_.....+d-|, Vv —0
3t ! (P )

a—u+ u%-y v@+ wa—u— +aa""+a%’+ar"z
P ey e e Ty
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58;( p¢)+div(pgv) = div(l'gradg)+ S

Essas equagdes podem ser integradas em relacfio ao volume de controle empregando o

Teorema da Divergéncia:

[ Z(o-uav = f(p-u)-da

volum,y

A integracfio das trés equacles acima nos da os seguintes resultados:

Mp=M; o v o
At 2 w

- . #,
M u-M u =—p—p,)A+|—
i, —M, u,=(p,-p,) Lx

o

(4 — )= % (Hp =ty )}A +5,

Ax W

e W

M, -M,g,=|T,9 0% &= |45 Ay
e [ w w ¢ Ax

As equacBes acima obtidas s3o equagdes algébricas que podem ser resolvidas dado que
as variaveis indeterminadas (u, p ¢ ¢) sfo interpoladas de uma maneira que relaciona
seus valores nas faces do volume de controle aos valores no centro do volume de

controle. O Procedimento de discretizagfo se baseia no esquema ilustrado na Figura 16.

W P E
- »*

L E

Figura 16 Esquema dos volumes de controle para discretizacdo.
A solugfio das equagdes expressa acima requerem: o calculo da pressdo nas faces do
volume de controle (pe, pw), que se determine o fluxo nas faces (M., My), € a
interpolagfio para relacionar os valores nas faces com os valores das incégnitas (u e ¢)

com os valores nos centros dos volumes de controle.

Os fluxos nas faces sdo obtidos de tal forma que as velocidades nas faces obedecem a
um balango médio do momento. J4 as pressdes nas faces sfo obtidas de tal forma que as

velocidades armazenadas no centro da célula obedecem ao balango de massa.
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4.2.1.Fungbes de interpolagdo para MVF

Ao discretizar uma equagiio de transporte que possua termos convectivos ndo nulos
aparecera, na equagfio discretizada, valores de ¢ nas faces dos volumes de controle.

Esses valores precisam ser interpolados entre os valores centrais dos volumes.

Tomando como exemplo um volume de controle unidimensional (dire¢iio x) e a

seguinte equacdo de transporte:

AX
W P i E
L 4 W i
Ay
—
L F)

Figura 17 Volume de Controle unidimensional.
L (pug)=L(r &
dx dx\  dx
Integrando a equagfio acima no volume de controle resulta em:
Me ) ¢e _Mw '¢w . De(¢£ - ¢P)+ Dw(¢W - ¢P)
Onde:
Fluxos convectivos (vazio méssica):
M, = pudy

M, = p,u, Ay

Termos difusivos (viscosidade):

D, =T Ay/Ax

D =T Av/Ax
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4.2.1.1. UpWind de 12 ordem

A interpolagio das variaveis nas faces ¢ feita da seguinte forma:

b =¢p,se M, >0; ¢, =¢g,se M, <0.
$y=dw,se M,>0; ¢, =¢p,se M, <0.

A ordem de precisio deste método é de Ax (1° ordem).

4.2.1.2. UpWind de 22 ordem

Para esse método, os valores da variavel nas faces sfo calculados ponderando os valores

centrais dos volumes vizinhos:
3 1
b =>4 -
A

3 1
b ="y~
2 2
Apds a aproximacdo numérica, chega-se a uma matriz de coeficientes que geralmente
apresenta alto indice de esparsidade, torna-se entdio fundamental escolher

apropriadamente o método de solugfio do sistema linear, para que essa solugéio ndo leve

um tempo exagerado.

Quando se utilizam malhas ndo estruturadas, como no caso em questfio, cada volume
pode ter um nimero diferente de vizinhos, 0 que origina matrizes com uma banda
diagonal variavel, e ndo matrizes tri, penta ou heptagonais quando se utilizam malhas

estruturadas. Isto torna os métodos de solugo para sistemas lineares mais elaborados.
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4.3. Geracdo de Malhas Nao-Estruturadas

Existem vdrios métodos numéricos utilizados para a resolugfio de problemas em CFD.
Entre eles estd o método das diferengas finitas, método de elementos finitos, método
espectral ¢ método dos volumes finitos. Este Gltimo € utilizado nas simulagbes deste
trabalho ¢ terd uma descricdio detalhada adiante. Todos estes métodos tém carater
“euleriano”, isto é, a andlise é focada num espago fixo em relagfo ao sistema de
coordenadas adotado, ¢ nfo na particula. Desse modo, é necessario que se discretize o
dominio do problema a fim de aplicarmos o método de resolugéo. E nisso que consiste a
geracio de malhas, da discretizagdo do dominio em varios elementos de forma geral
pré-determinada, com a finalidade de estabelecer a posigéo dos pontos (nds) para os
quais serdo calculadas as solugdes pretendidas. A geragdo de malhas, a determinacéo
das condi¢des de contorno e condi¢Bes iniciais e o ajuste dos pardmetros de solugio

constituem o que se costuma chamar de pré-processamento do problema.

A fase de geragfio de malhas é muito importante na medida em que a geragdo de uma
malha valida num dominio com uma geometria complexa nfio ¢ uma operagdo trivial e
pode ter um custo bastante grande em termos de tempo de processamento. Além do
mais, a criagio de uma malha coerente com as caracterfsticas fisicas do problema
considerado & crucial, porque a qualidade da solugio computada estd fortemente

relacionada com a qualidade da malha.

4.3.1. Nogbes gerais relativas a malhas

Uma malha de um dominio, €, € definida por um conjunto, 73, que consiste de um
numero finito de segmentos em uma dimensdo, segmentos, tridngulos e quadrilateros
em duas dimensdes e os elementos anteriores mais tetraedros, pentacdros e hexaedros
em trés dimensdes. Os elementos, K, de tal malha devem satisfazer um determinado
ntmero de propriedades que serdo introduzidas a seguir. A primeira diz respeito &

conformidade, de acordo com a defini¢éo:

Definicdo: 7 ¢ uma malha conforme de €2 se as seguintes condiges sdo satisfeitas:
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1. ﬁ:uKenK;

2, Todos os elementos de Ty, t&m interior de 4rea (no caso bidimensional) ou

volume (no caso tridimensional) néo nulo;

3. A intersecio de dois elementos quaisquer de Ty se enquadra em um, e

apenas um, dos seguintes casos:

. Conjunto vazio;

. Um ponto comum aos dois elementos;
. Uma aresta comum aos dois elementos;
) Uma face comum aos dois elementos.

Se 7, é uma malha conforme, entio dizemos que ela representa € de maneira conforme
quanto a aspectos geométricos. Na pratica, 7; ¢ um particionamento de Q, téo preciso
quanto possivel. Quando © nfio € um dominio poligonal (ou poliedral), 7j sera apenas

uma discretizagdo aproximada do dominio.

Os elementos constituinies de uma malha devem geralmente satisfazer algumas

propriedades especificas:

4.3.1.1. Propriedades Geométricas

¢ A variagio dimensional entre dois elementos adjacentes tem que ser progressiva

e descontinuidades de elementos para elementos néio podem ser muito abruptas.

o A densidade de clementos em regibes de gradientes elevados de alguma

grandeza envolvida no problema deve ser alta.

e Quando os elementos sdo do tipo triangular, deve-se evitar a presenga de

angulos obtusos nos elementos.

e Os elementos devem se adequar s caracteristicas anisétropicas do problema.



46

4.3.1.2. Propriedades de Natureza Fisica

Essas propriedades estdo fortemente ligadas aos aspectos fisicos do problema em
consideragio. A configuragdo geral e individual dos elementos deve ser definida de

acordo com o comportamento do problema.

Existem numerosos algoritmos para a construcdo de malhas bidimensionais e
tridimensionais. A escolha do método esta fortemente ligada & geometria do dominio
considerado. As malhas geradas podem ser agrupadas em duas classes principais:
malhas estruturadas e malhas ndo-estruturadas. Uma malha é chamada de estruturada
se sua conectividade & do tipo de diferencas finitas. Uma malha é chamada de n#o-
estruturada se sua conectividade ¢ de qualquer outro tipo. Por conectividade de uma
malha entendemos a definicfo da conexfio entre seus vértices, em outras palavras, a

conexdo entre os nos globais de uma malha e os nés locais de cada elemento da malha.

Elucidando melhor os conceitos: para uma malha estruturada, a conectividade entre os
no6s é do tipo (G, j, k), isto é, assumindo que indices de um determinado n6 sejam (i, j, k),
seu vizinho esquerdo tera os indices ((i-1), j, k) e seu vizinho direito terd os indices
((i+1), j, k). Este tipo de malha é mais apropriado para geometrias simples ¢ simétricas,
tais como configuracdes quadrilaterais e hexaedrais. Para geometrias mais complexas, ¢
necessdrio um tratamento especial para que este tipo de estruturagdo seja concebido. O
presente trabalho lida com simulagBes que utilizam malhas nfo estruturadas, que por
sua vez apresentam menos restrigdes geométricas, mas tem um custo computacional

maior.
Podemos ainda dividir os diferentes algoritmos de gera¢dio de malha em sete classes:

Métodos manuais ou semi-aufomdticos: adequados para geometrias
relativamente simples. Estdo nessa classe os métodos enumerativos, nos quais os
pontos, arestas, faces e elementos que compde a malha sdo dados explicitamente; e
métodos apropriados para situagdes geométricas particulares, como formas cilindricas e
hexaedrais, os quais usam propriedades especificas da geometria explicitamente e a

conectividade é conhecida “a priori”.
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Métodos que utilizam mapeamento: constroem a malha a partir do mapeamento,
através de uma transformacgio conforme de um dominio, de uma malha de geometria

simples.

Métodos baseados na solucdo de um sistema de equacdes diferencinis a
derivadas parciais: essa abordagem se assemelha & segunda, mas aqui a fungdio de
mapeamento nio ¢ dada a principio, mas é computada a partir da resolugo de equagdes
diferenciais a derivadas parciais, de forma a satisfazer certas propriedades de interesse,

tais como densidade de elementos e ortogonalidade.

Métodos baseados na deformacgdo e modificacio local de uma malha: cste
método aplica-se principalmente a malhas de fécil obtengfio, do tipo quadiree, em casos
bidimensionais, ou octree, para casos tridimensionais. Nestes casos o dominio esta
encerrado num quadrilatero ou num paralelepipedo que ¢ divido em subconjuntos na
forma de caixas. Esses subconjuntos sfio construidos pela decomposicdo baseada em
uma éarvore quaterndria (para dimensdo 2) ou 4rvore octal (dimensio 3). A rede

resultante é entdo utilizada para criar a malha desejada.

Métodos que derivam a malha final, elemento por elemento, dos dados do
conforno: basicamente existem duas abordagens: métodos de frente progressiva
(“advancing front methods™) e algoritmos baseados na construgdo de Voronoi-
Delaunay. Estes métodos criam nés internos e elementos, comegando da fronteira do
dominio. Esta fronteira pode ser dada de maneira global (por exemplo, definidos de
forma analitica) ou de maneira discreta (como uma lista de arestas de faces
triangulares). Esta classe de métodos é de particular interesse neste trabalho, pois € a

que o software de geragfio de malhas utilizado (Gambit 2.0.4) emprega.

Métodos que utilizam a composicio de malhas de subconjuntos baseados na
modificacdo geométrica ou topoldgica dessas malhas: neste caso, as malbas dos
subconjuntos podem ser obtidas por qualquer um dos métodos anteriores. O problema ¢
entdio divido em um conjunto de “subproblemas” de menor complexidade, que sdo entéo
resolvidos por uma ou mais classes das anteriormente citadas e o resultado final € entdo

obtido por transformagdes e a adi¢do dos resultados parciais.
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Assim sendo, percebe-se que as principais diferengas entre os algoritmos de geragio de
malhas estdio na generalidade do método, principalmente com relagdo & geometria, ¢ a

variedade, quantidade e forma dos dados que tem que ser fornecida ao algotitmo.

O estabelecimento da nogfio de malha de tal forma que esta seja conveniente em termos
da computagsio futura precede a escolha do método geral de concepglo da malha.
Escolhido o método, existem diferentes maneiras pelas quais ele pode ser

implementado.

4.3.2. Descrigdo Geral

Uma malha tem que ser descrita de acordo com a sua aplicagio. No caso de simulagdes
de escoamentos externos, que € o que ocorre neste trabalho, sdo necessdrias as
defini¢Ses de objetos solidos e da zona fluida que os circunda. Nesta defini¢do deverdo
estar contidas todas as informagdes necessrias considerando os vérios passos na
computacdo. Estas informages incluem geometria, condigdes de contorno. Elas podem

ser agrupadas em trés tipos:

4.3.2.1. Informag¢do Geomeétrica

Aqui se incluem a descrigdo da malha, ou seja, como seus elementos cobrem o dominio,
e uma espécie de histérico que contenha toda a informagdio previamente utilizada na
construgio dos elementos. Também tem que estar descrito o tipo de elemento

(segmento, tridngulo, quadrilatero, tetraedro, pentaedro, hexaedro ou outro).

A maneira pratica da descri¢do da malha se constitui na listagem dos vértices dos
elementos, a conectividade, as coordenadas dos vértices e a topologia, que ¢ a descri¢o

das arestas e faces de um elemento pelos seus vértices.

4.3.2.2. Informacées Necessérias ao Processamento

Encontram-se agrupados aqui os dados para computagdo das matrizes, solugfio dos

sistemas e visualizaciio dos resultados. Estas informag¢Bes variam de acordo com o
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algoritmo numérico utilizado para a resolugdo do problema. Exemplos s@o o ndmero ¢ a

lista dos nos dos elementos.

E preciso frisar que os nds ¢ os vértices de um elemento podem coincidit ou ndo. Podem
existir nés intermedidrios localizados nas arestas, faces ou interior do elemento.
Convenciona-se entdo uma ordem de numeragfo, de modo a simplificar a representagdo
dos elementos. A seguir sdo dados quatro exemplos de elementos triangulares, com 0s

respectivos nds numerados e indicados:

1 4 3 2

Figura 18 Diferentes numeragGes dos nos de um elemento triangular.

4.3.2.3. Informacgbes Fisicas

Nesta classificacfio estdo as condigdes iniciais e de contorno e caracterizagéo fisica dos

elementos (material e propriedades, por exemplo).
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4.3.3. Metodologia Geral para Criagdo de Malhas

A concepgio de uma malha pode ser decomposta em trés passos:
e Andlise do problema;
¢ Definigfo formal do processo de geragdo da malha;
e A construgdo da malha propriamente dita.

O primeiro passo consiste na andlise da geometria do dominio e do problema fisico a ser
resolvido. Essa analise deve ser feita segundo uma metodologia top-down, ou seja, na

decomposi¢io de um problema complexo numa série de problemas mais simples.

A construcio formal da malha, que constitui o segundo passo, leva em conta os
resultados da analise efetuada no primeiro passo e ¢ baseada numa construgio bottom-
up, que ¢ a definicdo de objetos simples tornando a solugdo do problema completo

possivel através da soma das solugdes dos objetos.

Por ultimo, a construgdo da malha propriamente dita ¢ feita através do uso de um
algoritmo apropriado de geragfio de malhas e consiste de duas fases: a defini¢do do

conjunto de dados relevantes e a geracfo real da malha.

4.3.4. Métodos de Frente Progressiva (Advancing Front
Methods)

Aqui sera feita uma introdugfio geral ao método empregado pelo software utilizado para
gerar as malhas das simulag@es deste trabalho (Gambit 2.0.4). Esta classe de geradores
de malhas foi desenvolvida entre as décadas de 70 e 80 e foi a primeira solugfo
automatica para a geragio de malhas para dominios de geometrias arbitrarias.
Basicamente, os algoritmos constroem a malha do dominio a partir da fronteira do
mesmo. Os elementos utilizados sdo tridngulos no caso bidimensional e tetracdros no
caso tridimensional., Qs dados demandados sdo as fronteiras do dominio ou, mais
precisamente, sua discretizagdo poligonal (para dimensdo 2) descritos por uma lista de
segmentos, ou sua discretiza¢do poliedral (para dimensgo 3) descritos por uma lista de

faces triangulares.
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O processo ¢ iterativo: uma frente, inicializada por um conjunto de itens da fronteira
dada, ¢ analisada a fim de estabelecer uma zona de partida, a partir da qual um ou mais
elementos internos sio criados; a frente é entfio atualizada e o processo de criagdo de
elementos & repetido se a frente ndo for um conjunto vazio. O algoritmo pode ser

sumariado da seguinte forma (veja também o esquema mostrado na Figura 19):
e Inicializagfo da frente;
e Andlise da frente:
— Determinag¢fo da zona de partida;
— Analise da regido:
» Criagfio dos pontos internos e dos elementos internos;
s  Atualizagfio da frente.

¢ Se a frente nio for um conjunto vazio, voltar para “Anélise da frente”.

Contorno dads

————W Frente

l

Frente vagia? ﬂ—hF}M’

Figura 19 Esquema geral do método de frente progressiva.



52

A anslise da frente e a criagiio dos elementos podem ser feitas de varias formas. Aqui
serfio descritas uma forma para o caso bidimensional ¢ uma para 0 caso tridimensional.
Logo apos séo introduzidas algumas extensdes que servem para controlar a criagéo dos
pontos internos e dos elementos, de tal maneira que a malha resultante tenha algumas

caracteristicas particulares, como elementos isotrépicos, elementos anisotrdpicos, etc.

4.34.1. Métodos de frente progressiva em duas
dimensdes

Como ja foi exposto, este tipo de algoritmo constréi a malha do dominio £ com

tridngulos que partem do seu contorno. Na pratica, uma aproximago poligonal do

contorno é usada em termos de uma lista dos seus elementos constitutivos. O interior do

dominio, ou seja, a zona a ser discretizada, estd bem definida por causa da orientagdo do

contorno servindo como dado de entrada. A frente inicial £ ¢ definida como o conjunto

de segmentos da fronteira C descrevendo o dominio Q.

Dada F, pode-se detalhar a maneira pela qual 0s tridngulos sdo criados. Enquanto o
processo de criagdo dos tridngulos internos progride, a fronteira C e a frente F' sdo

atualizadas. Considerando F o atual estado da frente, entdo sua andlise é baseada no
exame das propriedades geométricas dos seus elementos constituintes. Chamando de o
o Angulo formado por dois segmentos consecutivos da frente F, entfio sdo as trés

situagdes:

7 ] = " .
s <E’ os dois segmentos com dngulo o sdo mantidos e tornam-se

dois lados do triangulo criado (Figura 20);

Figura 20 Padrdo 1.
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T 27 . n .
e —=<a ST’ dos dois segmentos com angulo o, um ponto Interno e

2
dois tridngulos sfo gerados (Figura 21);

!
s)
¥ 8 SE
5y So S4
4
53

Figura 21 Padrdo 2.

2 . . o A
e <o, um segmento ¢ mantido, um tridngulo & criado com este

segmento sendo um dos lados e um ponto interno (Figura 22);

Figura 22 Padrdo 3.

As posigoes dos pontos internos criados sdo definidas de forma que sejam OGtimas,
significando que os elementos que tém esses pontos como vértices sejam os mais
regulares possiveis. No caso do padrfio 2, o vértice ¢ gerado na linha bissetriz do 4ngulo
o a uma distdncia computada a partir dos respectivos comprimentos das arestas da zona

de partida: a localizago deste ponto interno S € calculada pela formula:

i
dygs, = g(2dszs, +2ds g +dgs + dms)
Para outros casos, o padrio 1 ¢ utilizado. No caso do padrio 3, um tridngulo o mais

proximo de um eqiiilatero possivel é formado usando o segmento mais curto da zona de

partida.

Na criacfio de cada ponto, é necessdrio verificar se o ponto esta dentro do dominio ainda
nfio coberto pelos elementos j& construidos. Isto quer dizer cada ponto criado tem que

estar dentro do dominio considerado e fora de qualquer elemento existente. Essa
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verificagdio, crucial para este tipo de método, baseia-se no conhecimento exato da
vizinhanca da zona que esta sendo criada. No caso bidimensional, um ponto serd interno
sc a intersecclo de todas as arestas que dele partem com qualquer aresta da frente é um
conjunto vazio. No caso de dominios com um ou mais Joops internos (“buracos”), é
necessario considerar ainda a condi¢do de que nenhum tridngulo formado com o ponto
em questdo contenha um ponto, em qualquer segmento, do contorno de qualquer loop

interno presente.

Uma nova frente ¥ ¢ formada pela supressdo dos segmentos que pertencam aos
tridngulos criados e & antiga frente; e pela adicdo dos novos segmentos dos tridngulos
criados, que nfio sejam comuns a dois elementos. O estado atualizado de F ¢ entdo
processado da mesma forma. A Figura 23 mostra varios estados da frente em evolugio
correspondendo ao dominio mostrado na Figura 24. Uma vez que F seja um conjunto

vazio, a malha final esta constituida.

g, o

Figura 23 Estados da frente progressiva.
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Figura 24 Malha final.
No caso de dominios fortemente ndo convexos, o método pode ndo convergir. Além
disso, uma variagiio muito aguda na distribui¢do dos pontos na fronteira pode produzir
um resultado negativo similar. Para sanar este problema, consideram-se apenas
subconjuntos primdrios adequados, ou um método diferente tem que ser usado. De fato,
este resultado negativo é uma conseqiiéncia da dificuldade em provar a validade do

método teoricamente, mas uma implementacfo mais astuta pode superar este problema.

A triangulagfio obtida estd claramente relacionada ao nimero e localizagfo relativa dos
pontos que discretizam a fronteira. Assim, especificando os pontos da fronteira
adequadamente, é possivel obter uma densidade variavel de elementos em certas regides

da malha.

A malha final pode ser polida a fim de obter tridfngulos de melhor qualidade. Este
processo corrige a posi¢do dos pontos criados usando informagdes locais globalmente.

O resultado ¢ mostrado na Figura 25.
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s VAYAVAY.

SRR

Figura 25 Malha antes e depois de ser refinada.

Existem numerosas varia¢bes do método de frente progressiva. Em particular, a zona de

partida pode ser escolhida como:

Uma parte do contorno tal que seus elementos constitutivos satisfagam certas condi¢des

(a Figura 22 ilustra o resultado de um algoritmo pertencente a esse grupo);

A fronteira inteira constitui a frente, e seus elementos constitutivos participam da

criagdo de elementos numa ordem pré-definida,

A primeira abordagem se aplica especialmente a zonas particulares, por exemplo,
aquelas que contém Angulos pequenos. A segunda abordagem produz uma inflagdo da

frente inicial (Figura 26) ou a propagac¢io de uma linha inicial (Figura 27).

Figura 26 Frente progredindo por inflagdo.



57

Figura 27 Frente progredindo pelo avango de uma linha.

Este método pode também ser aplicado para a criagdo de quadrilateros. Baseado no
mesmo principio, o algoritmo intenta em criar quadrilateros com a forma a mais regular
possivel. Este processo utiliza tridgngulos em locais impossiveis de serem cobertos por

um quadrilatero ou uma combinagio deles.



38

4.4. Modelagem da Turbuléncia

O modelo aqui exposto ¢ uma breve descrigdo do volume 10 da retferéncia [4], € na

medida do possivel, deve ser consultada para um melhor entendimento deste trabatho.

O modelo de turbuléncia Spalart-Allmaras é um modelo relativamente simples que
resolve apenas uma equagfo de transporte para a viscosidade cinematica turbulenta.
Esse modelo engloba uma classe relativamente nova de modelos de uma equagfio em
que ndo se faz necessario calcular uma escala de comprimento relacionada & espessura
local da camada onde os cfecitos viscosos se fazem importante. Esse modelo foi
desenvolvido especialmente para as aplicagBes aeroespaciais que envolvem
escoamentos com camada limite ¢ 1€m mostrado dar bons resultados para camadas

limites sujeitas a gradientes adversos da pressio.

Na sua forma original, o modelo € bastante eficaz para escoamentos com nimero de
Reynolds baixo. No FLUENT, entretanto, o modelo pode ser utilizado com certas
fungdes de parede quando a defini¢dio da malha ndo ¢ suficientemente fina. Isto pdde
fazer dele a melhor escolha para simulagdes na fase de projeto basico onde podemos
usar malhas relativamente mais grossas, pois a exatiddo dos resultados nfo possui um

carater critico,

Entretanto, esse modelo é, de certa forma, relativamente novo, e ainda nfo se sabe a
respeito da sua aplicagfio estar correta a todos os tipos de escoamentos encontrados na

engenharia.

Nos modelos de turbuléncia que utilizam a equagdo de Boussinesq para calcular a
tensfo de Reynolds, a questio principal é como a viscosidade turbulenta sera calculada.
O modelo proposto por Spalart e por Allmaras resolve uma Unica equagdo de franspotie
para essa quantidade, que é uma forma modificada da viscosidade cinematica

turbulenta.
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4.4.1. A equacgéo de transporte

A variavel de transporte no modelo Spalart-Allmaras, Vv, ¢ idéntica & viscosidade
cinemética turbulenta, exceto na regifio proxima a parede (afetada pelos efeitos

visc0s0s). A equacio de transporte para v é

2
8, . 0O, . 1| 0 - OV ov
E;(pv)+§i(pvu,)=(?,,+; g{(,u+pv)gt}+q,2p[gbj Y +S,

¥ J

onde G, é a produgfo da viscosidade turbulenta e ¥, ¢ a destrui¢do da viscosidade

v
turbulenta que ocorre na regido proxima a parede devido a condigfo de aderéncia e ao

amortecimento viscoso. o, e C,, sdio constantes empiricas ¢ v ¢ a viscosidade
cinemadtica molecular. S; é um termo-fonte definido pelo préprio usuério. Note que

desde que a energia cinética turbulenta £ ndo € calculada no modelo de Spalart-
Allmaras, o Gltimo termo na equagfio 10,2-5 ¢é ignorado ao estimar as tensdes de

Reynolds.

4.4.2. Modelando a Viscosidade Turbulenta
A viscosidade turbulenta, y, , é calculada da seguinte forma
Hm=pvf,
onde a fun¢do de amortecimento viscoso, f,,, ¢ dada por

3

__ X
-f;‘] Z3 + Cv13

< | =
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4.4.3. Modelando a Produgéo de Turbuléncia

O termo de produgo, G, , ¢ modelado da seguinte maneira:

G, = Cb]p’g';
onde
S 2d2 f;’z
e
V4
—1—
S I+ x 1,

C, e x sdo constantes, d ¢ a distancia da parede, ¢ S € uma medida escalar do tensor

de deformagido. No modelo original, S € calculado com a seguinte expressao:

S=,/2Q Q.

(/a4

onde €, ¢ definido por

Q’.. au (311
’ 2 6x 6x

A justificativa para a expressdo de S € que a turbuléncia sé se caracterizava onde havia
vorticidade, que era gerada nas regides proximas a parede. Esse fato serviu de grande

interesse para a formulag¢@o do modelo. Entretanto, sabe-se que a tensdo média, S, , tem

efeito na produgéio de turbuléncia, e um incremento ao modelo foi proposto.

Esta modifica¢io combina medidas de rotag@io e do tensor das tensdes na definigdo de

S

s,|-2))

|Q |+Cpmd mm(

onde



C g =2.0 2,|=20,0, 15,|= /25,5,

Sendo:
AN

4.4.4. Modelando a Destruigdo Turbulenta

O termo de destrui¢do ¢ modelado como
17 2
Y =C —
v wlpfw (dj

onde

/6
1+C,,°
g6 +C..¢

w3

fw=g{

g:r+Cw2(r(’—r)

~

Vv

==k

Skld?

C,, C, e C,; sio constantes. Veja que a modificagdo descrita acima inclui os efeitos

de S, o que interfere também no valor de S para calcular ».

4.4.5. O Modelo DES
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O modelo Spalart-Allmaras padriio usa a distdncia mais préxima da parede como uma

definicdo para a escala de comprimento &, que tem um papel importante na

determinac¢io do nivel de produgdo e destruigdo de viscosidade turbulenta. O modelo

DES substitui d por uma nova escala de comprimento d , definida como

d =min{d,C,,A)
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onde o espagamento da malha, A, ¢ baseado na maior dimensfio da célula, considerando

as direcBes x, y e z. A constante C, ¢ empirica e vale 0,65.

4.4.6. Constantes do Modelo

As constantes C,,, C,,, 0;, C,, C,,, C,,, C,, e k¥ t&m os seguintes valores padrio:

C, =0.1355 C,, =0.622 o, =§ C, =71 o, =§
1+C
o =C—’;+M C,=03 C,, =20 Kk =0.4187
K [

vV

4.4.7.Condi¢bes de Contorno na Parede

Na parede, a viscosidade cinematica turbulenta, v, assume o valor zero.

Quando uma malha ¢ fina o suficiente para calcular a subcamada laminar, a tensdo de

cisalhamento na parede ¢ obtida através da seguinte relagdo:

u _puy

U

1 H

Se a malha é muito grossa, assumimos que o centréide da célula adjacente a parede se

enquadra na regifio logaritmica da camada limite, e a lei de parede € entéio empregada:

u_1, E[MJ

U K H

onde u ¢ a velocidade paralela a parede, u, ¢ a velocidade tangencial, y ¢ a distdncia

da parede, x ¢ a constante de Von Karméan, e £=9.793.
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4.4.8. Modelando a Transferéncia de Calor e de Massa

O transporte turbulento de calor é modelado usando o conceito da analogia de Reynolds

com a transferéncia da quantidade de movimento turbulenta.

E equacéo da energia ¢ entfio dada pela seguinte expressio:

) 5 5 c i\ oT
é;(pE)+a_%[uf(pE+p):|=87[(k+;—rf'Ja—+uf(Ty)cﬁ:|+Sh

J xj

onde %, neste caso, ¢ a condutividade térmica, E ¢ a energia total e (ru )ﬁ é 0 tensor
e.

das tensdes, definido como

3

(Z‘ ) = p [auj +5MIJ 2# 6u,5
Y oy — Fleff T M Y
ey ox, ox, ) 3 ox, "

O termo (rg. )ﬁ representa 0 aquecimento causado pelos efeitos viscosos. O nimero de
[+

Prandtl padrio utilizado pelo Fluent é 0,85.

A transferéncia de massa ¢ tratada de forma semelhante, s6 que desta vez com o ntimero

de Schimidt. O valor padrio é de 0,70.
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5. Resultados

Nesta se¢do serfio apresentados todos os resultados obtidos durante o trabalho, tais
como o campo de velocidade, pressdo, temperatura, densidade, linhas de corrente,
contorno de vorticidade e vetores de velocidade. Além disso, é mostrado também, o
efeito causado na simulagfio numérica em func¢dio do numero de células presentes em

cada malha.

Todos os valores observados nos graficos e figuras apresentados nesta parte estio no

Sistema Internacional de Unidades.

5.1. Geometrias Bidimensionais

Aqui estdo presentes as andlises feitas para perfis bidimensionais, objetivando o

aprendizado e familiariza¢io com o programa utilizado.

Para todas as simula¢es mostradas nesta secfo, foi adotado o modelo de turbuléncia
“Spalart-Allmaras”, com aproximagdo “UpWind” de segunda ordem para a fungio de
interpolagdo. O campo de pressdo ao longe ¢ em forma de uma elipse e o perfil se
encontra a uma distdncia de 5 cordas do montante e a 10 cordas de jusante. O nimero de

Mach ao longe € fixado em 0.30 e a temperatura € de 300K.

Foi feito um estudo de sensibilidade para validar a utiliza¢io das malhas, ndo correndo

o risco da eventual obtengio de resultados errados.



65

5.1.1.Perfil NACA 2412

A analise deste perfil considera as informagdes citados no item 5.1. A malha utilizada
nesta simulagdo possui 41192 células, 204 nds na parede ¢ 182 nods na condigio de

campo de pressdo ao longe.

5.1.1.1. Angulo de ataque de 0°
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Figura 28 Campo de Velocidade.
A Figura 28 mostra o campo de velocidade proximo ao perfil, para um dngulo de ataque
de 0°. Note que a magnitude da velocidade ¢ maior na parte superior que na infeior € o
ponto de estagnagfio do escoamento s¢ encontra bem no bordo de ataquedo aerofdlio;
um detalhe mais preciso na parede mostraria que a velocidade na parede € nula,

conforme a teoria da aderéncia.
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Figura 29 Campo de Pressdo em Pa.

A Figura 29 indica o campo de pressdo ao redor do aerofdlio, e se faz coerente com o
campo de presséio mostrado na Figura 28. Note que a pressdo é maior na parte inferior

do perfil, gerando assim uma forca vertical positiva, resultando num coeficiente de

sustentagdo positivo.,

5.1.1.2. Angulo de ataque de 3°
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Figura 30 Campo de Velocidade.
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Podemos ver na Figura 30 e Figura 31 a conseqiiéncia de impormos uma variagfio de 3°

no angulo de ataque do aerofolio.

De maneira aniloga ao caso anterior, o campo de velocidade mostrado na Figura 30,
mostra que a magnitude da velocidade € maior na superficie superior, porém o seu valor

maximo é maior que no primeiro caso.

Da mesma forma ocorre com a pressdo. A Figura 31 mostra que os valores de pressdo
maiores ocorrem na superficie inferior, s6 que desta feita, a magnitudade ¢ maior que na
primeira simulagio. Assim sendo, para este dngulo de ataque, teremos uma forca de

sustentagfio maior, resultando num coeficiente de sustentagdo maior.

Figura 31 Campo de Pressdo em Pa.
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5.1.1.3. Angulo de ataque de 6°
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Figura 32 Campo de Velocidade.
Da mesma maneira que ocorreu um acréscimo na velocidade quando impusemos um
angulo de ataque de 3°, nessa simula¢8io também h4 um acréscimo na valor maximo da
velocidade, como pode ser visto na Figura 32, onde ¢ mostrado o campo de velocidade

para essa nova condi¢éo.

De maneira semelhante, vamos observar o resultado para o campo de pressfo. Na
Figura 33, vemos o contorno de pressdo ao redor do aerof6lio ¢ quando comparamos
com os valores do item 5.1.1.2, podemos observar que os valores da pressdo na parte
superior do perfil sdo menores, ou seja, mais uma vez temos uma componente de forga
com maior mddulo, gerando um coeficiente de sustentagdo maior que o obtido no item

anterior.
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Figura 33 Campo de Presséo em Pa.

5.1.2.Perfil NACA 0012

A andlise deste perfil considera as informagdes citados no item 5.1. A malha utilizada

nesta simulagio possui 120728 células, 408 nos na parede ¢ 196 no6s na condicio de

campo de pressdo ao longe.

5.1.2.1. Angulo de ataque de 0°

Foi feita apenas uma analise para o perfil 0012. Pois 0 mesmo fendmeno observado no

item 5.1.1 se verificaria aqui.

A seguir temos trés figuras que mostram o campo de pressdo, velocidade e temperatura.
Por se tratar de um perfil simétrico, vemos que o campo de pressdo na Figura 34 ¢
simétrico. O mesmo ocorre para a velocidade e temperatura, mostrados na Figura 35 ¢

Figura 36.
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Figura 34 Campo de Pressdo.

Figura 35 Campo de Temperatura.
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Figura 36 Campo de Velocidade.
Note que os maiores valores de temperatura ocorrem proximo a parede, e isso se deve

ao alto valor de gradiente de velocidade com relagfo as duas coordenadas cartesianas.

A termo de dissipagfio viscosa na equagfio da energia serve de bom suporte para

entender os resultados encontrados na Figura 35.
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5.1.3. Perfis NACA 0012 versus 2412

A seguir seré apresentada uma comparagdo entre o nimero de iteragSes necessérias para

convergéncia do coeficientes de sustentagiio C, e de arrasto, C),, entre duas malhas.

A malha utilizada para o perfil NACA 2412 foi criada com aproximadamente 41200
células e foram necessérias cerca de 450 iteragbes até chegarmos a convergéncia
requerida. A malha para o perfil 0012 possui cerca de 121000 células e para este caso

foram calculadas quase 800 iterag@es até a convergéncia.

Podemos ver também, ainda em relacfio a quantidade de células presentes na malha, que

o tempo de processamento aumenta significativamente com o incremento no nimero de

elementos.

Variagio do Coeficiente de Sustentagao - Perfil 2412
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0,20 |

015 '

0,10 +1

Coeficlente de Sustentagéo [-—]

0,05

0,00 l .
100 200 300 400

Nimero de lteracdes [—]

Figura 37 Oscilacdo do coeficiente de sustentaglio para uma malha com 41192 elementos.
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Figura 38 Oscilagdo do coeficiente de arrasto para uma malha com 41192 elementos.
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Figura 39 Oscilagdo do coeficiente de sustentagdo para uma matha com 120728 elemenios.
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Figura 40 Oscilacdo do coeficiente de arrasto para wma matha com 120728 elementos.
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5.2. Geometrias Tridimensionais

Aqui estfio presentes as analises feitas para cinco geometrias tridimensionais. Logo ap6s
os resultados graficos, é apresentada uma tabela comparando os valores obtidos de Cy,

Cp ¢ C1/Cp para cada uma das simulagdes.

Para todas as simulag¢Bes mostradas nesta segdio, foi adotado o modelo de turbuléncia
“Spalart-Allmaras”, com aproximacio “UpWind” de segunda ordem para a fun¢édo de
interpolagdo. O campo de pressdo ao longe ¢ em forma de uma elipse e o perfil se
encontra a uma distincia de 4 cordas do montante e a 10 cordas de jusante. O nimero de

Mach ao longe € fixado em 0.30 € a temperatura € de 300K.

Foi feito um estudo de sensibilidade para validar a utilizagio das malhas, ndo correndo

o risco da eventual obtencéio de resultados errados.

Para facilitar a simula¢io, bem como o tempo de processamento, os modelos
tridimensionais aqui expostos, foram criados considerando a simetria do problema, ou
seja, apenas metade da malha do solido foi criada. Isso pode ser melhor visualizado nas

secOes seguintes, quando serfo apresentadas cada geometria indivudualmente.

As duas figuras abaio mostram as condigdes de contorno para todos os casos estudados.

: uniﬂ;’g" i
A
mﬁm%?s'g?a'v
v,
o,

Figura 41 Campo de Pressdo ao longe.
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Figura 42 Face de simetria.

A Figura 41 indica a condigiio do campo de pressdo ao longe, com suas determinadas

caracteristicas apresentadas logo acima.

A Figura 42 mostra a face de simetria do problema. Ela, junto com o campo de pressdo

ao longe formam o envélucro global do escoamento.

A figura abaixo € um detalhe da malha, onde pode-se visualizar de melhor maneira a

regido de simetria proxima ao folio.

Figura 43 “Zoom” na regido da face de simetria.
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5.2.1. Geometria 01

A analise deste perfil considera as informagdes citados no item5.2. A malha utilizada
nesta simulaco possui 157519 células, 5420 faces na condigdo de campo de presséo ao

longe, 9486 faces na condigfio de parede e 9814 faces na parede de simetria.

A figura abaixo mostra a primeira geometria utilizada para realizar esse estudo.

S

Figura 44 Malha da geometria utilizada na primeira simlacdo.

5.2.1.1. Resultados graficos

Os resultados obtidos sdo mostrados a seguir. A Figura 45 mostra as linhas de corrente
que vem desde o lado montante do escomento, passa através da asa e segue para jusante,
Note que as linhas de corrente tém uma tendéncia a se deslocarem de cima para baixo,
ou seja, do lado de maior pressdo para o lado de menor presso. Isso pode ficar mais

claro quando observamos o campo de pressdo na Figura 46 ¢ na Figura 47,

Como dito acima, a Figura 46 e a Figura 47, mosiram o campo de pressdo na parede da
asa ¢ fica claro que o lado superior é o lado de maior pressdo. Assim sendo, ha uma
forca resultante vertical para baixo (“Down Force™) que gera um coeficiente de

sustentacio negativo, visto na Tabela 5.1.
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Figura 45 Linhas de corrente.
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Figura 46 Conforno de press
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Figura 48 Contorno de temperatura na parede de simetria.
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Figura 49 Contorno de velocidade na parede de simetria.

Na Figura 48 mostra o contorno da tamperatura na parede de simetria do problema.
Note que os maiores valores de temperatura estdio proximos a regiéio da parede, ja que €
neste local onde os gradientes de velocidade em relagfio as coordenadas cartesianas sdo

mais intensos. Isso pode ser esclarecido de uma methor forma se olharmos a funcio de

dissipagdo viscosa na equacdo da energia.

O campo de velocidade na parede de simetria ¢ apresentado na Figura 49. Nela
podemos ver que a magnitude da valocidade ¢ maior na superficie inferior da asa, ou
seja, 0 lado de menor pressfo. Veja também que na regido da parede propriamente dita

o valor da velocidade é zero, conforme o principio da aderéncia.
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Figura 80 Valores de vorticidade no plano afastado ¥ corda da asa.

O contorno de vorticidade, num plano que esta localizado a uma distdncia de % corda
do bordo de fuga da asa, ¢ mostrado na Figura 50. Note que lugar o escoamento
proximo a ponta da asa é onde a magnitude da vorticidade ¢ mais intensa. Isso pode ser
confirmado quando observamos novamente a Figura 45, que mostra as linhas de

corrente nessa regifo.

5.2.2. Geomeftria 02

A analise deste perfil considera as informacdes citados no item5.2. A malha utilizada
nesta simulago possui 217207 células, 5420 faces na condigdo de campo de pressdo ao

longe, 14869 faces na condigdo de parede ¢ 16371 faces na parede de simetria.

A figura abaixo mostra a segunda geometria utilizada para realizar esse estudo.
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Figura 51 Malha da geometria utilizada na segunda simulagdo.

5.2.2.1. Resultados graficos

Os resultados obtidos sdo mostrados a seguir. A Figura 52 mostra as linhas de corrente
que vem desde o lado montante do escomento, passa através da asa e segue para jusante.
Note que as linhas de corrente, assim como no caso anterior, tém wma tendéncia a se
deslocarem de cima para baixo, ou seja, do lado de maior pressao para o lado de menor
press#o. Isso pode ficar mais claro quando observamos o campo de pressédo na Figura 53

e na Figura 54.

Como dito acima, a Figura 53 e a Figura 54, mostram o campo de pressdo na parede da
asa e fica claro que o lado superior ¢ o lado de maior pressdo. Assim sendo, hd uma
forca resultante vertical para baixo (“Down Force™) que gera um coeficiente de

sustentacio negativo, visto na Tabela 5.1.

Com essa nova geometria, chegamos a resultados de pressdo maiores na superficie
superior, de tal forma que o coeficiente de sustentagfio seja ligeiramente maior, em

médulo, que no primeiro caso.
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Figura 82 Linhas de corrente.
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Figura 53 Contorno de pressdo na superficie superior da geometria.
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Figura 54 Contorno de pressio na superficie inferior da geometria.

Figura 55 Contorno de temperatura na parede de simetria.
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Figura 56 Contorno de velocidade na parede de simetria.

Na Figura 55 mostra o contorno de temperatura na parede de simetria do problema.
Note que os maiores valores de temperatura estdo proximos a regido da parede, onde os
gradientes de velocidade em relagdo as coordenadas cartesianas s3o mais intensos. Isso
pode ser esclarecido de uma melhor forma se olharmos a fungfo de dissipagdo viscosa

na equagéio da energia.

O campo de velocidade na parede de simetria é apresentado na Figura 56. Nela
podemos ver que a magnitude da velocidade ¢ maior na superficie inferior da asa, ou
seja, 0 lado de menor pressdio. Veja também que na regido da parede propriamente dita

o valor da velocidade ¢ zero, conforme o principio da aderéncia.
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Figura 57 Valores de vorticidade no plano afastado ¥ corda da asa.

O contorno de vorticidade, num plano que estd localizado a uma distdncia de 2 corda
do bordo de fuga da asa, ¢ mostrado na Figura 57. Note que lugar o escoamento
proximo a ponta da asa ¢ onde a magnitude da vorticidade é mais intensa. Isso pode ser
confirmado quando observamos novamente a Figura 52, que mostra as linhas de

corrente nessa regifo.

Para essa geometria observamos que a modificagfo construida na lateral da asa causou

uma diminui¢fo no valor maximo da magnitudade de vorticidade.

5.2.3. Geometria 03

A anélise deste perfil considera as informagdes citados no item5.2. A malha utilizada
nesta simulagio possui 229859 células, 5420 faces na condig&o de campo de pressdo ao

longe, 16435 faces na condigiio de parede e 17011 faces na parede de simetria.

A figura abaixo mostra a terceira geometria utilizada para realizar esse estudo.



87

QZ

Figura 58 Malha da geometria utilizada na terceirva simulagdo.

5.2.3.1. Resultados gréficos

Os resultados obtidos sdo mostrados a seguir. A Figura 59 mostra as linhas de corrente
que vem desde o lado montante do escomento, passa através da asa € segue para jusante.
Note que as linhas de corrente, assim como no caso anterior, tém uma tendéncia a se
deslocarem de cima para baixo, ou seja, do lado de maior pressdio para o lado de menor
pressio. Isso pode ficar mais claro quando observamos o campo de pressdo na Figura 60

¢ Figura 61.

Como dito acima, a Figura 60 ¢ Figura 61, mostram o campo de pressdo na parede da
asa e fica claro que o lado superior é o lado de maior pressdo. Assim sendo, ha uma
forca resultante vertical para baixo (“Down Force”) que gera um coeficiente de

sustenta¢do negativo, visto na Tabela 5.1.

Com essa nova geometria, chegamos a resultados de pressdo maiores na superficie
superior, de tal forma que o coeficiente de sustentagdio seja ligeiramente maior, em
médulo, que no primeiro e segundo casos. Em outras palavras, significa dizer que a
integral do campo de pressio ao longo da 4rea do aerofélio produz uma forga vertical

com moédulo maior que os outros dois casos anteriores.
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Figura 59 Lirhas de corrente.
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Figura 60 Contorno de press
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Figura 61 Contorno de pressdo na superficie inferior da geometria.

Figura 62 Contorno de temperatura na parede de simetria.
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Figura 63 Contorno de velocidade na parede de simetria.

Na Figura 62 mostra o contorno da temperatura na parede de simetria do problema.
Note que os maiores valores de temperatura estiio proximas a regido da parede, onde os
gradientes de velocidade em relagfio as coordenadas cartesianas s30 mais intensos. Isso

pode ser esclarecido de uma melhor forma se olharmos a fungfo de dissipacdo viscosa

na equagfio da energia.

O campo de velocidade na parede de simetria é apresentado na Figura 63. Nela
podemos ver que a magnitude da valocidade € maior na superficie inferior da asa, ou
seja, o lado de menor pressdio. Veja também que na regido da parede propriamente dita

o valor da velocidade € zero, conforme o principio da aderéncia.
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Figura 64 Valores de vorticidade no plano afastado ¥ corda da asa.

O contorno de vorticidade, num plano que esta localizado a uma distincia de % corda
do bordo de fuga da asa, ¢ mostrado na Figura 64. Note que lugar o escoamento
proximo a ponta da asa € onde a magnitude da vorticidade ¢ mais intensa. Isso pode ser
confirmado quando observamos novamente a Figura 59, que mostra as linhas de

corrente nessa regido.

Para essa geometria observamos que a modificagfio construida na lateral da asa causou
um acréscimo no valor maximo da magnitudade de vorticidade, tanto com relagéo a

geometria 01 como na geometria 02,

5.2.4. Geometria 04

A analise deste perfil considera as informagdes citados no item5.2. A malha utilizada
nesta simulagdo possui 265306 células, 5420 faces na condigdo de campo de pressio ao

longe, 21985 faces na condicéo de parede ¢ 17011 faces na parede de simetria.

A figura abaixo mostra a quarta geometria utilizada para realizar esse estudo.
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Figura 65 Malha da geometria utilizada na quarta simulagdo.

5.2.4.1. Resultados graficos

Os resultados obtidos sdo mostrados a seguir. A Figura 66 mostra as linhas de corrente
que vem desde o lado montante do escomento, passa através da asa e segue para jusante.
Note que as linhas de corrente, assim como no caso anterior, tém uma tendéncia a se
deslocarem de cima para baixo, ou seja, do lado de maior pressdo para o lado de menor
pressdo. Isso pode ficar mais claro quando observamos o campo de pressdo na Figura 67

¢ Figura 68.

Como dito acima, a Figura 67 ¢ Figura 68, mostram o campo de pressdo na parede da
asa ¢ fica claro que o lado superior ¢ o lado de maior pressdo. Assim sendo, hd uma
fora resultante vertical para baixo (“Down Force”) que gera um coeficiente de

sustentagfo negativo, visto na Tabela 5.1.

Com essa nova geometria, chegamos a resultados de pressdo maiores na superficie
superior, de tal forma que o coeficiente de sustentacio seja ligeiramente maior, em
médulo, que no primeiro, segundo e terceiro casos. Em outras palavras, significa dizer
que a integral do campo de pressiio ao longo da 4rea do aerofélio produz uma forga

vertical com médulo maior que os outros trés casos anteriores.
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Figura 66 Linhas de corrente.
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Figura 67 Conforne de press
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Figura 69 Contorno de temperatura na parede de simetria.
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Figura 70 Contorno de velocidade na parede de simetria.

Na Figura 69 mostra o contorno da temperatura na parede de simetria do problema.
Note que os maiores valores de temperatura estdo préximas a regido da parede, onde os
gradientes de velocidade em relagdo as coordenadas cartesianas sdo mais intensos. Isso
pode ser esclarecido de uma melhor forma se olharmos a fungio de dissipag¢io viscosa

na equagéo da energia.

O campo de velocidade na parede de simetria € apresentado na Figura 70. Nela
podemos ver que a magnitude da valocidade ¢ maior na superficie inferior da asa, ou
seja, o lado de menor presséo. Veja também que na regifio da parede propriamente dita

o valor da velocidade é zero, conforme o principio da aderéncia.
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Figura 71 Valores de vorticidade no plano afastado ¥: corda da asa.

O contorno de vorticidade, num plano que esta localizado a uma distdncia de ¥ corda
do bordo de fuga da asa, ¢ mostrado na Figura 71. Note que lugar o escoamento
proximo a ponta da asa € onde a magnitude da vorticidade é mais intensa. Isso pode ser
confirmado quando observamos novamente a Figura 66, que mostra as linhas de

cotrente nessa regido.

Para essa geometria observamos que a modificacdo construida na lateral da asa causou
um decréscimo no valor maximo da magnitudade de vorticidade, com relagfio as

geometria 01 € 03; e um acréscimo com relagio a geometria 02.

5.2.5. Geometria 05

A andlise deste perfil considera as informagdes citados no item5.2. A malha utilizada
nesta simulaco possui 297039 células, 5420 faces na condigfio de campo de pressdo ao

longe, 27907 faces na condigio de parede e 16981 faces na parede de simetria.

A figura abaixo mostra a quinta geometria utilizada para realizar esse estudo.
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Figura 72 Mallha da geometria utilizada na primeira simulagdo.

5.2.5.1. Resultados gréficos

Os resultados obtidos s@o mostrados a seguir. A Figura 73 mostra as linhas de corrente
que vem desde o lado montante do escomento, passa através da asa e segue para jusante,
Note que as linhas de corrente, assim como no caso anterior, tém uma tendéncia a se
deslocarem de cima para baixo, ou seja, do lado de maior pressdo para o lado de menor

pressao. Isso pode ficar mais claro quando observamos o campo de pressio na Figura 74

e Figura 75.

Como dito acima, a Figura 74 e Figura 75 mostram o campo de pressdo na parede da asa
e fica claro que o lado superior € o lado de maior presséo. Assim sendo, ha uma forca
resultante vertical para baixo (“Down Force™) que gera um coeficiente de sustentagio

negativo, visto na Tabela 5.1.

Com essa nova geometria, chegamos a resultados de pressdo maiores na superficie
superior, de tal forma que o coeficiente de sustentagfio seja ligeiramente maior, em
modulo, que no primeiro, segundo e terceiro casos. Em outras palavras, significa dizer
que a integral do campo de pressdo ao longo da drea do aerofélio produz uma forga

vertical com moédulo maior que todos os outros casos anteriores.
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Figura 73 Linhas de corrente.
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Figura 75 Contorno de pressdo na superficie inferior da geometria.

Figura 76 Contorno de temperatura na parede de simetria,
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Figura 77 Contorno de velocidade na parede de simetria.

Na Figura 76 mostra o contorno da temperatura na parede de simetria do problema.
Note que os maiores valores de temperatura est8o proximas a regido da parede, onde os
gradientes de velocidade em relacfio as coordenadas cartesianas si0 mais intensos. Isso

pode ser esclarecido de uma melhor forma se olharmos a fun¢fio de dissipagdo viscosa

na equagdo da energia.

O campo de velocidade na parede de simetria é apresentado na Figura 77. Nela
podemos ver que a magnitude da valocidade é maior na superficie inferior da asa, ou
seja, o lado de menor pressdo. Veja também que na regifio da parede propriamente dita

o valor da velocidade ¢ zero, conforme o principio da aderéncia.
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Figura 78 Contorno de vorticidade no plano localizado a ¥; corda do bordo de fuga.

O contorno de vorticidade, num plano que esta localizado a uma distancia de Y2 corda
do bordo de fuga da asa, é mostrado na Figura 78. Note que lugar o escoamento
proximo a ponta da asa é onde a magnitude da vorticidade ¢ mais intensa. Isso pode ser

confirmado quando observamos novamente aFigura 73, que mostra as linhas de corrente

nessa regifo.

Para essa geometria observamos que a modificagdo construida na lateral da asa causou
um decréscimo no valor maximo da magnitudade de vorticidade, com relagfio as

geometrias 01 e 03; e um acréscimo com relagdo as geometrias 02 e 04.
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5.2.6. Resumo dos Resultados

Nesta seglo estdo expostos de maneira suscinta os resultados alcan¢ados com as

simulagdes numéricas das cinco geometrias detalhadas anteriormente.

A tabela abaixo esclarece melhor os dados obtidos.

FEAN)| G |[FoMN)| Cp | CJ/Cp
01| Q@ |-444,51|-0.3839 32,69 |0.0282 | 13.613
02| " |-459,75|-0.3971| 36,49 | 0.0315 | 12.606
03| e | -470,68|-0.4065| 60,31 | 0.0521 | 7.802
04| @yl | -485,27|-0.4191| 43,20 |0.0373 | 11.236
05| Qg |-512,56|-0.4427| 50,49 | 0.0436 | 10.154

Tabela 5.1 Valores de C; e Cp para as cince geometrias estudadas.

No item 6 pode-se encontrar um breve comentario a respeito dos resultados finais deste

trabalho.,
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6. Comentarios e Conclusoes

Alguns comentarios se fazem importante nessa fase do trabalho, para esclarecer

eventuais dividas que surgem na leitura ¢ interpretacdo do texto.

Os resultados obtidos com o modelo de turbuléncia escolhido nfo € algo em que
possamos acreditar piamente, j& o proprio nome diz ser um modelo. No entanto, para a
aplicagfio que nos interessa, ou seja, o estudo de escoamentos externos compressiveis,

esse & 0 modelo mais adequado para a analise dos resultados.

Outro fator importante que pode ser observado ¢ com relag@o a malha utilizada em cada

calculo. No item 5.1.3 podemos ver com clareza essa influéncia.

A malha utilizada para o perfil NACA 2412 foi criada com aproximadamente 41200
células e foram necessarias cerca de 450 iteragbes até chegarmos a convergéncia
requerida. A malha para o perfil 0012 possui cerca de 121000 células e para este caso

foram calculadas quase 800 iteragdes até a convergéncia.

Podemos ver também, ainda em relacdo a quantidade de células presentes na malha, que

o tempo de processamento aumenta significativamente com o incremento no niimero de

elementos.

No item 5.2.6 podemos ver uma tabela contendo as principais informagdes obtidas das

cinco simulagdes. Pode-se notar que todas as modificagdes adotadas no solido

diminuiram o valor de C, /C,,.

As alteragBes criadas na geometria original aumentaram apenas os valores da forga
vertical (“Down Force”), porém a relagfio obtidas entre os coeficientes de sustentagio e
de arrasto obtidas nas simulagdes das geometrias 02, 03, 04 ¢ 05 sempre foram menores

que a da geometria 01;

Os resultados da forcas verticais possuem valores préximos ao da realidade. Para a
velocidade em questio, o valor dessa for¢a (considerando um carro completo) €
proximo do proprio peso do carro (600kg). A geometria 05 foi a que apresentou o maior

valor de “Down Force” de aproximadamente 103kg. O resultado da tabela 5.1 mostra
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que a forca vertical para apenas um lado da asa ¢ de cerca de 513 N, ou seja, cerca de
51.5 kg. Sendo assim, a outra metade da asa contribui com mais 51.5 kg, resultando

numa forca total de aproximadamente 103 kg.

As gometrias 3 e 4 sdo bem parecidas. Se olharmos na Figura 58 e na Figura 65,
podemos ver que o “winglet” na ponta da asa da geometria 3 possui uma espessura
maior que na 04. Dessa forma verificamos nitidamente que 0 valor do coeficiente de
arrasto ¢ bem maior no caso 3 que no caso 4, enquanto o coeficiente de sustentagdo é
relativamente maior no caso 4. Tendo isso em vista, pode-se concluir que o acabamento
superficial do “winglet” e a forma com que ele ¢ criado interferem substancialmente no

resultado final.

A realizagio desse trabalho permitiu a comparagdo entre as geometrias utilizadas, assim
como era esperado, mostrando que a implantagdo dos “winglets” na ponta da asa
contribui para o acréscimo progressivo do coeficiente de sustentagio. Dessa forma, o
resultado apresentado na Tabela 5.1 indica que a geometria 05 ¢ a mais adequada para
utilizagdo, pois o valor da forga vertical, em médulo, € maior que em todos os outros

Ccasos.
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